Assessment of the Correlation Between Vibrio spp. Abundance in Whiteleg Shrimp (Litopenaeus vannamei) and Pond Water, Jepara, Central java, Indonesia
DOI:
https://doi.org/10.61741/JMBI.2026.v4.p1-9Kata Kunci:
Litopenaeus vannamei, Monitoring, Vibrio sp., Water qualityAbstrak
Vibrio spp. are key bacterial groups influencing pond health in shrimp aquaculture. This study examined the relationship between Vibrio abundance in Pacific white shrimp (Litopenaeus vannamei) and pond water in intensive grow-out ponds in Jepara, Central Java. Ten ponds were monitored for two months (DOC 7–56) using weekly paired shrimp and water sampling. Ponds were categorized by surface area as small (100–250 m²), medium (560 m²), and large (1,000 m²). Vibrio abundance was quantified using APW enrichment and TCBS agar plating, followed by Spearman’s correlation and generalized linear model analyses. Across all ponds, Vibrio levels were consistently higher in shrimp (5.7 × 10⁴–2.6 × 10⁹ CFU/g) than in pond water (10³–10⁵ CFU/mL). In 9 of 10 ponds, correlations between shrimp and water Vibrio were weak or non-significant, indicating that waterborne levels alone do not reliably reflect bacterial loads in shrimp. Only one pond showed a strong and significant correlation. Generalized linear model results indicated no significant differences in Vibrio abundance among pond size categories in either shrimp or water. These findings demonstrate that pond size did not significantly influence Vibrio dynamics and highlight the need for simultaneous monitoring of shrimp and pond water. Sustained high Vibrio levels in shrimp may serve as an early-warning indicator of elevated microbial risk, even when water quality remains within acceptable ranges.
Unduhan
Referensi
Amalisa, Mahasri, G., and Kismiyati., 2021. The correlation between ectoparasite infestation and total Vibrio parahaemolyticus bacteria in pacific white shrimp (Litopenaeus vannamei) in super intensive ponds. Earth and Environmental Science, (888): 1–7. https://doi.org/10.1088/1755-1315/888/1/012003
Alfiansah, Y. R., Hassenrück, C., Kunzmann, A., Taslihan, A., Harder, J., and Gärdes, A., 2018. Bacterial abundance and community composition in pond water from shrimp aquaculture systems with different stocking densities. Frontiers in microbiology, 9: 2457. https://doi.org/10.3389/fmicb.2018.02457
Asni, Rahim, Saleh, R., Landu, A., and Muliadi., 2023. Correlation between water quality parameters and Vibrio sp . bacteria content in traditional vannamei shrimp (Lithopenaeus Vannamei). Journal of Agriculture ( JoA ). 2(2): 121–131. https://doi.org/https://doi.org/10.47709/joa.v2i02.2577
Brauge, T., Mougin, J., Ells, T., and Midelet, G., 2024. Sources and contamination routes of seafood with human pathogenic Vibrio spp. : a farm-to-fork approach. WILEY: Comprehensive Reviews in Food Science and Food Safety. 33(1): 1–25. https://doi.org/10.1111/1541-4337.13283
Brum, K. D., Usmani, M., Chen, K. M., Gangwar, M., Jutla, A. S., Huq, A., and Colwell, R. R., 2021. Environmental parameters associated with incidence and transmission of pathogenic Vibrio spp . Environmental Microbioogy. 23: 7314–7340. https://doi.org/10.1111/1462-2920.15716
Brumfield, K. D., Chen, A. J., Gangwar, M., Usmani, M., Hasan, N. A., Jutla, A. S., and Huq, A., 2023. Environmental factors in fluencing occurrence of vibrio parahaemolyticus and Vibrio vulnificus. Applied and Enviromental Microbiology. 89(6): 1–19. https://doi.org/https://doi.org/10.1128/aem.00307-23
Brumfield, K. D., Usmani, M., Long, D. M., Lupari, H. A., Pope, R. K., Jutla, A. S., and Huq, A., 2025. Climate change and vibrio : Environmental determinants for predictive risk assessment. PNAS. 122(33): 1–10. https://doi.org/10.1073/pnas.
Chang, Y., Huang, W., Wu, P., Kumar, R., Wang, H., and Lu, H., 2024. Low salinity stress increases the risk of Vibrio parahaemolyticus infection and gut microbiota dysbiosis in pacific white shrimp. BMC Microbiology. 24(275): 1–16. https://doi.org/10.1186/s12866-024-03407-0.
Chen, Y., Kumar, V., Mitra, A., Rahimnejad, S., Tan, B., Niu, J., and Xie, S., 2024. Retrospect of fish meal substitution in pacific white shrimp ( Litopenaeus vannamei ) feed : alternatives, limitations and future prospects. Review in Aquaculture. 16(1): 382–409. https://doi.org/10.1111/raq.12843
Chen, Y., Wang, T., Cao, Z., Haochun, K., Li, K., and Cheng, R., 2024. Reducing total plate count of bacteria through dark sealed storage for plant factory nutrient solution sterilization. HortTechnology. 34(6): 738–746. https://doi.org/10.21273/HORTTECH05538-24
Deris, Z. M., Iehata, S., Gan, H. M., Ikhwanuddin, M., Najiah, M., Sung, Y. Y., and Wong, L. L., 2022. Understanding the effects of salinity and Vibrio harveyi on the gut microbiota profiles of Litopenaeus vannamei. Frontiers in Marine Science. 11(230): 1–16. https://doi.org/10.3389/fmars.2022.974217
Eun, J., Chan, S., Chan, S., Jin, H., Yeon, K., Seo, Y., Park, S., Han, S., Hyung, J., and Choi, S., 2020. Molecular detection of Enterocytozoon hepatopenaei and Vibrio parahaemolyticus- associated acute hepatopancreatic necrosis disease in Southeast asian Litopenaeus vannamei shrimp imported into Korea. Aquaculture. 517: 1-4. https://doi.org/10.1016/j.aquaculture.2019.734812
Faulds, N., Williams, J., Evans, K., Hughes, A., Leak, D., Crabtree, D., Sohier, D., Heikkinen, P., Hurskainen, E., Mcmahon, W., Cuthbert, N., Matthews, B., Ruben, L., Sturghill, L., and Godawski, F., 2023. Microbiological methods validation of the thermo scientific tm suretect tm Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus pcr assay for the detection of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in Seafood Matrix. Journal of AOAC International. 106(5): 1254–1277. https://doi.org/10.1093/jaoacint/qsad061
Farag, M. A., Mansour, S. T., Nouh, R. A., and Khattab, A. R., 2023. Crustaceans (shrimp, crab, and lobster): A comprehensive review of their potential health hazards and detection methods to assure their biosafety. Journal of Food Safety, 43(1), https://doi.org/10.1111/jfs.13026
Fries, B., Davis, B. J. K., Corrigan, A. E., Depaola, A., Curriero, F. C., and Fries, B., 2022. Nested spatial and temporal modeling of environmental conditions associated with genetic markers of Vibrio parahaemolyticus in washington state pacific oysters. Frontiers in Microbiology. 13: 1-14. https://doi.org/10.3389/fmicb.2022.849336
Geisser, A. H., Scro, A. K., Smolowitz, R., and Fulweiler, R. W., 2025. Macroalgae host pathogenic Vibrio spp. in a temperate estuary. Frontiers in Marine Biology. 12(4): 1–14. https://doi.org/10.3389/fmars.2025.1549732
Goh, J. X. H., Tan, L. T. H., Law, J. W. F., Khaw, K. Y., Zengin, G., Chan, K. G., and Goh, B. H. (2023). Probiotics: comprehensive exploration of the growth promotion mechanisms in shrimps. Progress In Microbes & Molecular Biology, 6(1). https://doi.org/10.36877/pmmb.a0000324
Kumar, V., Roy, S., Behera, B. K., Bossier, P., and Das, B. K., 2021. Acute hepatopancreatic necrosis disease (ahpnd): virulence, pathogenesis and mitigation strategies in shrimp aquaculture. Toxins. 13(8): 1–28. https://doi.org/https://doi.org/10.3390/toxins13080524
Kumarage, P. M., Silva, L. A. D. S. De, and Heo, G.-J., 2022. Aquatic environments: a potential source of antimicrobial- resistant Vibrio spp. Journal of Applied Microbiology. 33(6): 2267–2279. https://doi.org/10.1111/jam.15702
Makwarela, T. G., and Seoraj-pillai, N., 2025. Exploring the molluscan microbiome : diversity, functio, and ecological implications. Biology. 14(8): 1–30. https://doi.org/10.3390/biology14081086
Mustafa, A., Paena, M., Athirah, A., Ratnawati, E., Asaf, R., Suwoyo, H. S., Sahabuddin, S., Hendrajat, E. A., Kamaruddin, K., Septiningsih, E., Sahrijanna, A., Marzuki, I., and Nisaa, K., 2022. Temporal and spatial analysis of coastal water quality to support application of whiteleg shrimp Litopenaeus vannamei intensive pond technology. Suistainability. 14: 1–25. https://doi.org/10.3390/su14052659
Quigg, A., Gaona-Hernández, A., Hochman, M. S., Ray, S. M., and Schwarz, J. R., 2025. Applied Time Series Analyses (2000–2017) of Vibrio vulnificus and Vibrio parahaemolyticus (Pathogenic and Non-Pathogenic Strains) in the Eastern Oyster, Crassostrea virginica. Bacteria, 4(2): 17. https://doi.org/10.3390/bacteria4020017
Quintino-Rivera, J. G., Elizondo-González, R., Gamboa-Delgado, J., Guzmán-Villanueva, L. T., and Peña-Rodriguez, A., 2023. Metabolic turnover rate, digestive enzyme activities, and bacterial communities in the white shrimp Litopenaeus vannamei under compensatory growth. PeerJ, 11, e14747. https://doi.org/10.7717/peerj.14747
Salama, Y., and Chennaoui, M., 2024. Microbial spoilage organisms in seafood products : pathogens and quality control. European Journal of Microbiology and Infectious Diseases. 1(2): 66–89. 10.5455/EJMID.20240518114533
Sampaio, A., Silva, V., Poeta, P., and Aonofriesei, F., 2022. Vibrio spp.: life strategies, ecology, and risks in a changing environment. Diversity. 14(2): 1–26. https://doi.org/10.3390/d14020097
Schryver, P. De, and Vadstein, O., 2014. Ecological theory as a foundation to control pathogenic invasion in aquaculture. The ISME Journal. 8(4): 2360–2368. https://doi.org/10.1038/ismej.2014.84
Scruggs, E. F., Gulley, Z., Steele, G., Alahmadi, M., Barnawi, A., Majrshi, H., and Tiong, H. K., 2024. Recovery of pasteurization-resistant vagococcus lutrae from raw seafoods using a two-step enrichment, its presumptive prevalence, and novel classification phenotypes. Applied Microbiology. 4(4): 1434–1452. https://doi.org/10.3390/applmicrobiol4040099
Shakweer, M. S., Elshopakey, G. E., Abdelwarith, A. A., Younis, E. M., Davies, S. J., and Elbahnaswy, S., 2023. Comparison of immune response of Litopenaeus vannamei shrimp naturally infected with vibrio species , and after being fed with florfenicol. Fishes, 8(3): 1–22. https://doi.org/10.3390/fishes8030148
Shanmugasundaram, S., Mayavu, P., Manikandarajan, T., Suriya, M., Eswar, A., and Anbarasu, R., 2015. Isolation and identification of Vibrio sp . in the hepatopancreas of cultured white pacific shrimp ( Litopenaeus vannamei ). International Letter of Natural Science. 46: 52–59. https://doi.org/10.56431/p-1dioy2
Sheikh, H. I., Najiah, M., Fadhlina, A., Laith, A. A., Nor, M. M., and Jalal, K. C. A. 2022. Temperature upshift mostly but not always enhances the growth of vibrio species : a systematic review. Frontiers in Marine Science. 9: 1–17. https://doi.org/10.3389/fmars.2022.959830
Shinn, A. P., Wongwaradechkul, R., Coates, C. J., and Limakom, T., 2025. Confirmed spread of Vibrio parahaemolyticus by aerosols is a risk factor in the infection of shrimp ponds. Aquaculture. 598: 1–13. https://doi.org/10.1016/j.aquaculture.2024.741923
Takemura, A. F., Chien, D. M., and Polz, M. F., 2014. Associations and dynamics of vibrionaceae in the environment, from the genus to the population level. Frontiers in Microbiology. 5(2): 1–26. https://doi.org/10.3389/fmicb.2014.00038
Tawhid, M., Islam, M. M., and Tandon, S., 2024. Biochemical assay for detection of pathogenic and probiotic bacteria at shrimp and prawn from wild and different culture conditions in bangladesh. Suranaree Journal of Science & Technology. 31(1): 1–9. https://doi.org/10.3390/applmicrobiol4040099
Thorstenson, C. A., and Ullrich, M. S., 2021. Ecological fitness of Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus in a small-scale population dynamics study. Frontiers in Marine Science. 8: 1–16. https://doi.org/10.3389/fmars.2021.623988
Tran, N., Rodriguez, U., Yee, C., John, M., Mohan, V., John, P., Henriksson, G., Koeshendrajana, S., Suri, S., and Hall, S., 2017. Indonesian aquaculture futures : an analysis of fish supply and demand in indonesia to 2030 and role of aquaculture using the asiafish model. Marine Policy. 79: 25–32. https://doi.org/10.1016/j.marpol.2017.02.002
Van Doren, J. M., Kleinmeier, D., Hammack, T. S., and Westerman, A., 2013. Prevalence, serotype diversity, and antimicrobial resistance of Salmonella in imported shipments of spice offered for entry to the United States, FY2007–FY2009. Food Microbiology, 34(2): 239-251. https://doi.org/10.1016/j.fm.2012.10.002
Wan, S. H., Xu, W., Yu, E. Y. N., and Yung, C. C. M., 2025. Differentiation in vibrio populations across subtropical marine habitats. Environmental Microbiology. 27(5): 1–18. https://doi.org/10.1111/1462-2920.70107
Wang, X., Liu, J., Zhao, W., Liu, J., Liang, J., Thompson, F., and Zhang, X., 2022. Fine-scale structuring of planktonic Vibrio spp. in the chinese marginal seas. Applied and Enviromental Microbiology. 88(23): 1–21. https://doi.org/10.1128/aem.01262-22%0A
Xian-wei, W., and Petersen, J. 2025. Hemolymph microbiota and host immunity of crustaceans and mollusks. The ISME Journal. 19(1): 1–16. https://doi.org/10.1093/ismejo/wraf133
Xiong, J., Dai, W., and Li, C., 2016. Advances, challenges, and directions in shrimp disease control: the guidelines from an ecological perspective. Applied microbiology and biotechnology, 100(16): 6947-6954. https://doi.org/10.1007/s00253-016-7679-1
Xiong, J., Zhu, J., Wang, K., Wang, X., Ye, X., Liu, L., and Zhang, D., 2014. The temporal scaling of bacterioplankton composition: high turnover and predictability during shrimp cultivation. Microbial ecology, 67(2): 256-264. https://doi.org/10.1007/s00248-013-0336-7
Yildirim-aksoy, M., Eljack, R., Peatman, E., and Beck, B. H. 2022. Microbial pathogenesis immunological and biochemical changes in pacific white shrimp, Litopenaeus vannamei, challenged with Vibrio parahaemolyticus. Microbial Pathogenesis. 172: 1–7. https://doi.org/10.1016/j.micpath.2022.105787
Yudiati, E., and Azhar, N., 2024. Growth performance, survival rate, and resistance against ahpnd of Litopenaeus vannamei juveniles fed with synbiotic bio-encapsulated artemia. Jurnal Riset Akuaqulture. 19(3): 191–204. https://doi.org/http://doi.org/10.15578/jra.19.3.2024.191-204
Yudiati, E., Sedjati, S., Azhar, N., Oktarima, W., and Arifin, Z., 2021. Spirulina water extract and Lactobacillus bulgaricus FNCC – 0041 , Streptococcus thermophilus FNCC – 0040 secretion as immunostimulants in gnotobiotic Artemia challenge tests against pathogenic Vibrio parahaemolyticus, Spirulina water extract and Lactoba. 2nd International Conference on Fisheries and Marine: Earth and Environmental Science. 1–8. https://doi.org/10.1088/1755-1315/890/1/012018
Zhang, S., and Sun, X., 2022. Core gut microbiota of shrimp function as a regulator to maintain immune homeostasis in response to wssv infection. American Society for Microbiology: Microbiology Spectrum. 10(2): 1–11. https://doi.org/10.1128/spectrum.02465-21%0A
Zhou, Z., Lu, J., Zhan, P., and Xiong, J., 2025. Postlarval shrimp-associated microbiota and underlying ecological processes over ahpnd progression. Microorganisms. 13(4): 1–20. https://doi.org/10.3390/microorganisms13040720
Unduhan
Diterbitkan
##submission.dataAvailability##
The data that support the findings of this study are available from the corresponding author, upon reasonable request.
Terbitan
Bagian
Lisensi
Hak Cipta (c) 2026 JOURNAL OF MARINE BIOTECHNOLOGY AND IMMUNOLOGY

Artikel ini berlisensiCreative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

