Microbiological Assessment of Escherichia coli Contamination in Vannamei Shrimp (Litopenaeus vannamei)

Authors

  • Rizki Ahmad Fachreza Diponegoro University Author
  • Ibnu Pratikto Diponegoro University Author

DOI:

https://doi.org/10.61741/JMBI.2025.v3.p55-64

Keywords:

Escherichia coli, Food Safety, Litopenaeus vannamei, Microbiological Testing, MPN

Abstract

Whiteleg shrimp (Litopenaeus vannamei) is a globally important aquaculture commodity, including in Indonesia, due to its fast growth and salinity tolerance. Microbiological safety is crucial to protect consumer health and meet food quality standards. One key indicator in microbiological testing is the presence of Escherichia coli (E. coli), which reflects fecal contamination from poor water quality or unhygienic post-harvest handling. This study aimed to detect and characterize E. coli contamination in L. vannamei from two different pond systems with contrasting environmental conditions. Sample Q was collected from a pond relying on rainwater near a goat pen, posing a higher risk of organic contamination. Sample R originated from a pond with a controlled single water gate system and more stable water quality. Microbiological analysis was performed using the Most Probable Number (MPN) method with Lauryl Sulfate Broth (LSB) and EC broth for presumptive tests, L-EMB agar for confirmation, Gram staining, and biochemical IMViC tests (Indole, MR, VP, Citrate). Results showed higher coliform and E. coli contamination in sample Q, detectable up to 10⁻³ dilution, while sample R was positive only at 10⁻¹ to 10⁻² dilutions. All isolates exhibited typical E. coli phenotypic and biochemical characteristics, including Gram-negative short rods and IMViC pattern Indole (+), MR (+), VP (–), Citrate (–). These findings highlight the importance of water quality management and hygienic handling to control microbiological contamination in L. vannamei. Routine testing and strict monitoring are essential to ensure food safety and enhance the competitiveness of Indonesian aquaculture products in global markets.

Downloads

Download data is not yet available.

Author Biographies

  • Rizki Ahmad Fachreza, Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia 50241

  • Ibnu Pratikto , Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia 50241

References

Ahmed, S., Sarker, P., Islam, M., Kamal, M., & Mazid, M. 2001. Identification of cause of shrimp quality loss due to farm operation and post harvesting handling at depots and markets of Bangladesh. J. Biological Sci. 1: 188-191. https://doi.org/10.3923/jbs.2001.188.191

Alhabib, I., & Elhadi, N. 2024. Antimicrobial resistance pattern of Escherichia coli isolated from imported frozen shrimp in Saudi Arabia. PeerJ. 12: e18689. https://doi.org/10.7717/peerj.18689

Ali, A. A., Iorhemen, O. T., & Thring, R. W. 2025. Climate adaptation and resilience of biofiltration as a low-cost technological solution for water treatment – A critical review. Cleaner Water. 3: 100062. https://doi.org/10.1016/j.clwat.2024.100062

Alsharksi, A. N., Sirekbasan, S., Gürkök-Tan, T., & Mustapha, A. (2024). From Tradition to Innovation: Diverse Molecular Techniques in the Fight Against Infectious Diseases. Diagnostics, 14(24). https://doi.org/https://doi.org/10.3390/diagnostics14242876

Ayalew, T., Tassew, H., & Ayalew, B. 2024. Detection of Salmonella and Escherichia coli along the Fish Value Chain in Bahir Dar City, Ethiopia. Public Health Challenges. 3. https://doi.org/10.1002/puh2.204

Barbosa, L. J., Ribeiro, L. F., Lavezzo, L. F., Barbosa, M. M., Rossi, G. A., & do Amaral, L. A. 2016. Detection of pathogenic Escherichia coli and microbiological quality of chilled shrimp sold in street markets. Lett Appl Microbiol. 62(5): 372-378. https://doi.org/10.1111/lam.12562

Bhagwat, V. R. (2019). Chapter 9 - Safety of Water Used in Food Production. In R. L. Singh & S. Mondal (Eds.), Food Safety and Human Health (pp. 219-247). Academic Press. https://www.sciencedirect.com/science/article/pii/B9780128163337000096 https://doi.org/https://doi.org/10.1016/B978-0-12-816333-7.00009-6

Bhutia, M. O., Thapa, N., & Tamang, J. P. 2020. Molecular Characterization of Bacteria, Detection of Enterotoxin Genes, and Screening of Antibiotic Susceptibility Patterns in Traditionally Processed Meat Products of Sikkim, India. Front Microbiol. 11: 599606. https://doi.org/10.3389/fmicb.2020.599606

Bintsis, T. 2017. Foodborne pathogens. AIMS Microbiol. 3(3): 529-563. https://doi.org/10.3934/microbiol.2017.3.529

Brito, C., do Valle, B., Interaminense, J., Peixoto, S., Lima-Filho, J. V., & Soares, R. 2016. Microbiological quality of Litopenaeus vannamei culture using conventional and biofloc systems. Aquaculture Research. 47(10): 3098-3108. https://doi.org/10.1111/are.12760

BSN. 2015. SNI 2332.1:2015. Microbiological testing methods – Part 1: Determination of coliforms and Escherichia coli in fishery products. Jakarta (ID): National Standardization Agency of Indonesia.

Chandraval, D., & Chandan, S. 2016. Prevalence of Escherichia coli in Fish and Shrimps obtained from Retail Fish Markets in & around Kolkata, India. Frontiers in Environmental Microbiology. 2(1): 1-5. https://doi.org/10.11648/j.fem.20160201.11

Dao, J., Stenchly, K., Traoré, O., Amoah, P., & Buerkert, A. 2018. Effects of Water Quality and Post-Harvest Handling on Microbiological Contamination of Lettuce at Urban and Peri-Urban Locations of Ouagadougou, Burkina Faso. Foods. 7(12): 206. https://doi.org/10.3390/foods7120206

Dias, S. D. C., Costa, L. R. M., Buiatte, A. B. G., Cossi, M. V. C., Nero, L. A., Yamatogi, R. S., Bersot, L. D. S., & Pereira, J. G. 2024. Escherichia coli as a sentinel in the assessment of antimicrobial resistance in the tilapia production chain: from production environment to the final product. Front Antibiot. 3: 1461662. https://doi.org/10.3389/frabi.2024.1461662

Elhetawy, A. I. G., Mansour, A. T., Lotfy, A. M., Mansour, A. I. A., Shahin, S. A., Zayed, M. M., Sallam, G. R., & Abdel-Rahim, M. M. 2025. Integrated aquaculture of whiteleg shrimp Litopenaeus vannamei and European seabass Dicentrarchus labrax: impacts on performance, welfare, blood physiological response, carcass traits, productivity, and farm profitability. Aquaculture International. 33(4): 252. https://doi.org/10.1007/s10499-025-01907-y

Faridullah, M., Roy, V. C., & Lithi, U. J. 2016. Prevalence of Salmonella and Escherichia coli contamination in shrimp (Penaeus monodon) farms, depots and processing plants in different areas of Bangladesh. Asian Journal of Medical and Biological Research. 2(2): 171-176. https://doi.org/10.3329/ajmbr.v2i2.29007

Hazards, E. Panel o. B., Ricci, A., Allende, A., Bolton, D., Chemaly, M., Davies, R., Fernández Escámez, P. S., Girones, R., Herman, L., Koutsoumanis, K., Lindqvist, R., Robertson, L., Ru, G., Sanaa, M., Simmons, M., Skandamis, P., Snary, E., Speybroeck, N., Ter Kuile, B., Threlfall, J., Wahlström, H., Andersen, J. K., Uyttendaele, M., Valero, A., Da Silva Felício, M. T., Messens, W., & Nørrung, B. 2017. Guidance on the requirements for the development of microbiological criteria. EFSA Journal. 15(11): e05052. https://doi.org/10.2903/j.efsa.2017.5052

Henriksson, P. J. G., Tran, N., Mohan, C. V., Chan, C. Y., Rodriguez, U. P., Suri, S., Mateos, L. D., Utomo, N. B. P., Hall, S., & Phillips, M. J. 2017. Indonesian aquaculture futures – Evaluating environmental and socioeconomic potentials and limitations. Journal of Cleaner Production. 162: 1482-1490. https://doi.org/10.1016/j.jclepro.2017.06.133

Holcomb, D. A., & Stewart, J. R. 2020. Microbial Indicators of Fecal Pollution: Recent Progress and Challenges in Assessing Water Quality. Curr Environ Health Rep. 7(3): 311-324. https://doi.org/10.1007/s40572-020-00278-1

Hossain, M. S., Rahman, W., Ali, M. S., Sultana, T., & Hossain, K. M. M. 2021. Identification and Antibiogram Assay of Escherichia coli Isolated From Chicken Eggs. Journal of Bio-Science. 29: 123-133. https://doi.org/10.3329/jbs.v29i0.54828

Iber, B. T., & Kasan, N. A. 2021. Recent advances in Shrimp aquaculture wastewater management. Heliyon. 7(11): e08283. https://doi.org/10.1016/j.heliyon.2021.e08283

Knipe, H., Chaput, D., Basak, S. K., Lange, A., & Tyler, C. R. 2024. Contaminants in shrimp probiotics - a potential emerging threat to food security. Aquaculture. 593: 741338. https://doi.org/10.1016/j.aquaculture.2024.741338

Kornacki, J. L., Gurtler, J. B., & Stawick, B. A. (2015). 9. Enterobacteriaceae, Coliforms, and Escherichia coli as Quality and Safety Indicators. In Compendium of Methods for the Microbiological Examination of Foods. https://ajph.aphapublications.org/doi/abs/10.2105/MBEF.0222.014 https://doi.org/https://doi.org/10.2105/mbef.0222.014

Liao, I. C., & Chien, Y.-H. (2011). The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. In B. S. Galil, P. F. Clark, & J. T. Carlton (Eds.), In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 489-519). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_17 https://doi.org/https://doi.org/10.1007/978-94-007-0591-3_17

Liu, Q., Jin, X., Cheng, J., Zhou, H., Zhang, Y., & Dai, Y. 2023. Advances in the application of molecular diagnostic techniques for the detection of infectious disease pathogens (Review). Mol Med Rep. 27(5). https://doi.org/10.3892/mmr.2023.12991

McCrady, M. H. 1943. A Practical Study of Lauryl Sulfate Tryptose Broth for Detection of the Presence of Coliform Organisms in Water. Am J Public Health Nations Health. 33(10): 1199-1207. https://doi.org/10.2105/ajph.33.10.1199

Mohamed Hatha, A. A., Maqbool, T. K., & Suresh Kumar, S. 2003. Microbial quality of shrimp products of export trade produced from aquacultured shrimp. International Journal of Food Microbiology. 82(3): 213-221. https://doi.org/10.1016/S0168-1605(02)00306-9

Moyes, R. B., Reynolds, J., & Breakwell, D. P. 2009. Differential Staining of Bacteria: Gram Stain. Current Protocols in Microbiology. 15(1): A.3C.1-A.3C.8. https://doi.org/10.1002/9780471729259.mca03cs15

Ndraha, N., Lin, H.-Y., Wang, C.-Y., Hsiao, H.-I., & Lin, H.-J. 2023. Rapid detection methods for foodborne pathogens based on nucleic acid amplification: Recent advances, remaining challenges, and possible opportunities. Food Chemistry: Molecular Sciences. 7: 100183. https://doi.org/10.1016/j.fochms.2023.100183

Nowicki, S., deLaurent, Z. R., de Villiers, E. P., Githinji, G., & Charles, K. J. 2021. The utility of Escherichia coli as a contamination indicator for rural drinking water: Evidence from whole genome sequencing. PLoS One. 16(1): e0245910. https://doi.org/10.1371/journal.pone.0245910

Nurbaya, F., Ani, N., Sari, D. P., Maharani, N. E., & Indhun, Q. 2023. Factors Relating to the Presence of Escherichia coli Bacteria in Beverages at the Area of Junior High School 1 Sukoharjo. Journal of Public Health for Tropical and Coastal Region. 6(3): 10. https://doi.org/10.14710/jphtcr.v6i3.20335

Oktopura, A. A. D., Fauzi, A., Sugema, K., & Mulyati, H. 2020. Aquaculture performance in Indonesia: economics and social perspectives. IOP Conference Series: Earth and Environmental Science. 493(1): 012003. https://doi.org/10.1088/1755-1315/493/1/012003

Onyeaka, H., Ghosh, S., Obileke, K., Miri, T., Odeyemi, O. A., Nwaiwu, O., & Tamasiga, P. 2024. Preventing chemical contaminants in food: Challenges and prospects for safe and sustainable food production. Food Control. 155: 110040. https://doi.org/10.1016/j.foodcont.2023.110040

Ovissipour, R., Yang, X., Saldana, Y. T., Kaplan, D. L., Nitin, N., Shirazi, A., Chirdon, B., White, W., & Rasco, B. 2024. Cell-based fish production case study for developing a food safety plan. Heliyon. 10(13): e33509. https://doi.org/10.1016/j.heliyon.2024.e33509

Paray, A. A., Singh, M., Mir, M. A., & kaur, D. 2023. Gram Staining: A Brief Review. International Journal of Research and Review. 10: 336-341. https://doi.org/10.52403/ijrr.20230934

Reygadas, F., Gruber, J. S., Ray, I., & Nelson, K. L. 2015. Field efficacy evaluation and post-treatment contamination risk assessment of an ultraviolet disinfection and safe storage system. Water Research. 85: 74-84. https://doi.org/10.1016/j.watres.2015.08.013

Roberts, T. A., Cordier, J. L., Gram, L., Tompkin, R. B., Pitt, J. I., Gorris, L. G. M., & Swanson, K. M. J. (2005). Fish and fish products. In T. A. Roberts, J. L. Cordier, L. Gram, R. B. Tompkin, J. I. Pitt, L. G. M. Gorris, & K. M. J. Swanson (Eds.), Micro-Organisms in Foods 6: Microbial Ecology of Food Commodities (pp. 174-249). Springer US. https://doi.org/10.1007/0-387-28801-5_3 https://doi.org/https://doi.org/10.1007/0-387-28801-5_3

Rodrigues, C., & Cunha, M. Â. 2017. Assessment of the microbiological quality of recreational waters: indicators and methods. Euro-Mediterranean Journal for Environmental Integration. 2(1): 25. https://doi.org/10.1007/s41207-017-0035-8

Saimin, J., Hartati, H., Purnamasari, Y., Mulyawati, S. A., Tien, T., & Ayitrina, P. 2020. Microbiological and biochemical contamination analysis of refilled drinking-water in Abeli, Kendari, Southeast Sulawesi. The Indonesian Biomedical Journal. 12(2): 124-129. https://doi.org/10.18585/inabj.v12i2.871

Sharrer, M. J., & Summerfelt, S. T. 2007. Ozonation followed by ultraviolet irradiation provides effective bacteria inactivation in a freshwater recirculating system. Aquacultural Engineering. 37(2): 180-191. https://doi.org/10.1016/j.aquaeng.2007.05.001

Sheng, L., & Wang, L. 2021. The microbial safety of fish and fish products: Recent advances in understanding its significance, contamination sources, and control strategies. Comprehensive Reviews in Food Science and Food Safety. 20(1): 738-786. https://doi.org/10.1111/1541-4337.12671

Some, S., Mondal, R., Mitra, D., Jain, D., Verma, D., & Das, S. 2021. Microbial pollution of water with special reference to coliform bacteria and their nexus with environment. Energy Nexus. 1: 100008. https://doi.org/10.1016/j.nexus.2021.100008

Tran, N., Rodriguez, U. P., Chan, C. Y., Phillips, M. J., Mohan, C. V., Henriksson, P. J. G., Koeshendrajana, S., Suri, S., & Hall, S. 2017. Indonesian aquaculture futures: An analysis of fish supply and demand in Indonesia to 2030 and role of aquaculture using the AsiaFish model. Marine Policy. 79: 25-32. https://doi.org/10.1016/j.marpol.2017.02.002

Ulkhaq, S. P. M. S. M. F., I.A, Kenconojati, H., Putriantini, I. N., & Inaiyah, I. 2021. Microbiological Examination of Escherichia coli and Salmonella on Fishery Products at Fish Quarantine Station, Quality Control and Safety of Fishery Products Yogyakarta. Journal of Aquaculture Science. 6(2): 76-82. https://doi.org/10.31093/joas.v6i2.106

Walker, D. I., Younger, A., Stockley, L., & Baker-Austin, C. 2018. Escherichia coli testing and enumeration in live bivalve shellfish – Present methods and future directions. Food Microbiol. 73: 29-38. https://doi.org/10.1016/j.fm.2017.12.006

Wen, X., Chen, F., Lin, Y., Zhu, H., Yuan, F., Kuang, D., Jia, Z., & Yuan, Z. 2020. Microbial Indicators and Their Use for Monitoring Drinking Water Quality—A Review. Sustainability. 12(6): 2249. https://doi.org/10.3390/su12062249

WHO. (2015). WHO estimates of the global burden of foodborne diseases

Yamin, D., Uskoković, V., Wakil, A. M., Goni, M. D., Shamsuddin, S. H., Mustafa, F. H., Alfouzan, W. A., Alissa, M., Alshengeti, A., Almaghrabi, R. H., Fares, M. A. A., Garout, M., Al Kaabi, N. A., Alshehri, A. A., Ali, H. M., Rabaan, A. A., Aldubisi, F. A., Yean, C. Y., & Yusof, N. Y. 2023. Current and Future Technologies for the Detection of Antibiotic-Resistant Bacteria. Diagnostics (Basel). 13(20). https://doi.org/10.3390/diagnostics13203246

Yohans, H., Mitiku, B. A., & Tassew, H. 2022. Levels of Escherichia coli as Bio-Indicator of Contamination of Fish Food and Antibiotic Resistance Pattern Along the Value Chain in Northwest Ethiopia. Vet Med (Auckl). 13: 299-311. https://doi.org/10.2147/vmrr.S373738

Zhang, C., Guo, C.-Y., Shu, K.-H., Xu, S.-L., & Wang, D.-L. 2024. Comparative analysis of the growth performance, vitality, body chemical composition and economic efficiency of the main cultivated strains of Pacific white shrimp (Litopenaeus vannamei) in coastal areas of China. Aquaculture. 587: 740856. https://doi.org/10.1016/j.aquaculture.2024.740856

Downloads

Published

2025-05-31

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Issue

Section

Marine Biotechnology and Immunology

How to Cite

Fachreza, R. A. ., & Pratikto , I. . (2025). Microbiological Assessment of Escherichia coli Contamination in Vannamei Shrimp (Litopenaeus vannamei). Journal of Marine Biotechnology and Immunology, 3(2), 55-64. https://doi.org/10.61741/JMBI.2025.v3.p55-64

Similar Articles

You may also start an advanced similarity search for this article.