Evaluation of Carrageenan Yield and Toxicity from Kappaphycus alvarezii: Implications for Aquaculture and Environmental Impact

Authors

  • Maya Damayanti Diponegoro University Author
  • Ummu Salma Diponegoro University Author
  • Ipanna Enggar Susetya Sumatera Utara University Author
  • Mostafa Imhmed Ighwerb Asmarya Islamic University Author

DOI:

https://doi.org/10.61741/5r66rh88

Keywords:

Carrageenan extraction, Kappaphycus alvarezii, Toxicity assessment, Artemia salina larvae, Mariculture sustainability

Abstract

Carrageenan, a polysaccharide derived from red seaweeds, is widely used across industries due to its gelling, thickening, and stabilizing properties. Among the species of red algae, Kappaphycus alvarezii is a key source for carrageenan production, especially in tropical mariculture systems. The extraction process involves several steps, including grinding, hot water extraction, ethanol precipitation, and drying, each critical for optimizing both yield and quality of the final product. Despite its industrial applications, concerns about carrageenan's toxicity have been raised, particularly its potential to induce inflammation and immunosuppression, which may affect aquatic organisms in mariculture systems. This study aimed to optimize the extraction of carrageenan from K. alvarezii and assess its toxicity on Artemia salina larvae as a bioassay model. Extraction was conducted at varying concentrations (6% to 10% of the seaweed weight), with the highest yield obtained at 6%. The carrageenan extract was then tested for toxicity on A. salina larvae at concentrations of 10,000 ppm, 5,000 ppm, 2,500 ppm, 1,250 ppm, and 625 ppm. Mortality rates increased with higher concentrations, with the highest concentration causing near-total mortality within 24 hours (94.67%). The LC50 value for carrageenan extract was calculated to be 4.24 μg/mL, indicating a concentration-dependent toxicity. The regression analysis showed a strong linear relationship between concentration and mortality, supporting the use of A. salina as an effective model for toxicity testing in aquaculture. These findings highlight the need for further investigation into the safety of carrageenan use in aquatic environments and contribute to the development of more sustainable practices in marine-based.

Downloads

Download data is not yet available.

Author Biographies

  • Maya Damayanti, Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia 50241

  • Ummu Salma, Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Universitas Diponegoro, Semarang, Indonesia 50241

  • Ipanna Enggar Susetya, Sumatera Utara University

    Management of Aquatic Resources Study Programme, Faculty of Agriculture, Sumatera Utara University, Jl. Dr. A. Sofian No 3, Padang Bulan, Medan Baru District, Medan City, North Sumatera 20155

  • Mostafa Imhmed Ighwerb, Asmarya Islamic University

    Faculty of Marine Resources, Asmarya Islamic University, Zliten, Libya

References

Aisyah, D., Ramadhani, A. W., Fattah, M., Sofiati, D., & Anandya, A. 2023. Pengaruh Kelimpahan Plankton dan Kualitas Air Terhadap Performa Pertumbuhan Udang Vanname Pada Sistem Budidaya Intensif. JURNAL LEMURU. 5(2): 173-182. https://doi.org/10.36526/jl.v5i2.2637

Akbarurrasyid, M., Prajayati, V., Nurkamalia, I., Astiyani, W., & Gunawan, B. 2022. Hubungan Kualitas Air dengan Struktur Komunitas Plankton Tambak Udang Vannamei. Jurnal Penelitian Sains. 24: 90. https://doi.org/10.56064/jps.v24i2.688

Ardiansyah, F., & Rijal, S. S. 2023. Perbandingan Kualitas Air Menggunakan Parameter Macroinvertebrates dan Plankton pada Industri Penyedap Rasa Korea dan Jepang. Environmental Pollution Journal. 3(1): 653-663. https://doi.org/10.58954/epj.v3i1.115

Astriana, B. H., Putra, A. P., & Junaidi, M. 2022. Kelimpahan Fitoplankton Sebagai Indikator Kualitas Perairan Di Perairan Laut Labangka, Kabupaten Sumbawa. Jurnal Perikanan Unram. 12(4): 710-721. https://doi.org/10.29303/jp.v12i4.400

Azis, A., Nurgayah, W., & Salwiyah. 2020. Hubungan Kualitas Perairan dengan Kelimpahan Fitoplankton di Perairan Koeono, Kecamatan Palangga Selatan, Kabupaten Konawe Selatan. Sapa Laut. 5(3): 221-234.

Bahari, A., Moelants, K., Wallecan, J., Mangiante, G., Mazoyer, J., Hendrickx, M., & Grauwet, T. 2021. Understanding the effect of time, temperature and salts on carrageenan extraction from Chondrus crispus. Algal Research. 58: 102371. https://doi.org/10.1016/j.algal.2021.102371

Banti, C. N., & Hadjikakou, S. K. 2021. Evaluation of Toxicity with Brine Shrimp Assay. Bio Protoc. 11(2): e3895. https://doi.org/10.21769/BioProtoc.3895

Barçante, B., Nascimento, N. O., Silva, T. F. G., Reis, L. A., & Giani, A. 2020. Cyanobacteria dynamics and phytoplankton species richness as a measure of waterbody recovery: Response to phosphorus removal treatment in a tropical eutrophic reservoir. Ecological Indicators. 117: 106702. https://doi.org/10.1016/j.ecolind.2020.106702

Cheng, A. C., Chen, Y. Y., & Chen, J. C. 2008. Dietary administration of sodium alginate and kappa-carrageenan enhances the innate immune response of brown-marbled grouper Epinephelus fuscoguttatus and its resistance against Vibrio alginolyticus. Vet. Immunol Immunopathol. 121(3-4): 206. https://doi.org/10.1016/j.vetimm.2007.09.011

Cheng, A. C., Tu, C. W., Chen, Y. Y., Nan, F. H., & Chen, J. C. 2007. The immunostimulatory effects of sodium alginate and iota-carrageenan on orange-spotted grouper Epinephelus coicoides and its resistance against Vibrio alginolyticus. Fish Shellfish Immunol. 22(3): 197. https://doi.org/10.1016/j.fsi.2006.04.009

Cohen, S. M., & Ito, N. 2002. A critical review of the toxicological effects of carrageenan and processed eucheuma seaweed on the gastrointestinal tract. Crit Rev Toxicol. 32(5): 413-444. https://doi.org/10.1080/20024091064282

Dhewang, I. B., Yudiati, E., Subagiyo, S., & Alghazeer, R. 2023a. Carrageenan Extraction of Kappaphycus alvarezii Seaweed from Nusa Lembongan Waters Using Different Alkaline Treatments. Jurnal Kelautan Tropis. 26(2): 7. https://doi.org/10.14710/jkt.v26i2.17389

Dhewang, I. B., Yudiati, E., Subagiyo, S., & Alghazeer, R. 2023b. Supplementation of Carrageenan (Kappaphycus alvarezii) for Shrimp Diet to Improve Immune Response and Gene Expression of White Shrimp (Litopenaeus vannamei). Ilmu Kelaut. 28(2): 12. https://doi.org/10.14710/ik.ijms.28.2.161-172

Edi, M., Nasuki, N., Alauddin, M., Abrori, M., Br Ritonga, L., Primasari, K., & Rizky, P. 2021. Pengaruh Penggunaan Microbubble terhadap Kelimpahan Plankton Pada Budidaya Udang Vannamei. Chanos Chanos. 19: 155. https://doi.org/10.15578/chanos.v19i2.10331

Hamuna, B., Tanjung, R. H. R., Suwito, S., Maury, H. K., & Alianto, A. 2018. Kajian Kualitas Air Laut dan Indeks Pencemaran Berdasarkan Parameter Fisika-Kimia di Perairan Distrik Depapre, Jayapura. Jurnal Ilmu Lingkungan. 16(1): 9. https://doi.org/10.14710/jis.%v.%i.%Y.633-644

Hans, N., Gupta, S., Pattnaik, F., Patel, A. K., Naik, S., & Malik, A. 2023. Valorization of Kappaphycus alvarezii through extraction of high-value compounds employing green approaches and assessment of the therapeutic potential of κ-carrageenan. Int J Biol Macromol. 250: 126230. https://doi.org/10.1016/j.ijbiomac.2023.126230

Heriyanto, H., Kustiningsih, I., & Sari, D. K. 2018. The effect of temperature and time of extraction on the quality of Semi Refined Carrageenan (SRC). MATEC Web Conf. 154: 01034.

Inayah, Z. N., Musa, M., & Arfiati, D. 2023. Growth of Vannamei Shrimp (Litopenaeus vannamei) in Intensive Cultivation Systems. Jurnal Penelitian Pendidikan IPA. 9(10): 8821-8829. https://doi.org/10.29303/jppipa.v9i10.4278

Isman, H., Rupiwardani, I., Rupiwardani, I., & Sari, D. 2022. Gambaran Pencemaran Limbah Cair Industri Tambak Udang terhadap Kualitas Air Laut di Pesisir Pantai Lombeng. Jurnal Pendidikan dan Konseling (JPDK). 4(5): 3531-3541. https://doi.org/10.31004/jpdk.v4i5.7169

Istiqomah, Z., Subagiyo, S., & Yudiati, E. 2024. The Influence of Enrichment with Ascorbic Acid and Fermipan on Artemia sp. Exposed to Salinity Shock. J Mar Biotechnol Immunol. 2(1): 19-23. https://doi.org/10.61741/668wpm55

Jia, J., Chen, Q., Ren, H., Lu, R., He, H., & Gu, P. 2022. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. Int. J. Environ. Res. Public Health. 19(5): 3135.

Kim, D., & Kang, S. M. 2020. Red Algae-Derived Carrageenan Coatings for Marine Antifouling Applications. Biomacromolecules. 21(12): 5086-5092. https://doi.org/10.1021/acs.biomac.0c01248

Komisarska, P., Pinyosinwat, A., Saleem, M., & Szczuko, M. 2024. Carrageenan as a Potential Factor of Inflammatory Bowel Diseases. Nutrients. 16(9). https://doi.org/10.3390/nu16091367

Krisiyanto, K., Sunaryo, S., & Redjeki, S. 2021. Komunitas Fitoplankton Dan Kualitas Air Budidaya Udang Vannamei di Marine Science Techno Park Jepara. Journal of Marine Research. 10(4): 7. https://doi.org/10.14710/jmr.v10i4.31664

Kristiana, I., Astiyani, W. P., Pietoyo, A., Maulidia, A. I., & Akbarurrasyid, M. 2024. Identifikasi Plankton pada Tambak Udang Vaname (Litopenaeus vannamei) di Teaching Factory Politeknik Kelautan dan Perikanan Pangandaran. Samakia: Jurnal Ilmu Perikanan. 15(1): 142-149.

Lichtfouse, J., Lécluse, L., Demelier, A., & Giannoni, P. 2024. Brine shrimp Artemia salina to evaluate the impact of environmental concentrations of BMAA and isomers, DAB and AEG, via mortality (nauplii) and behavioural (adult) tests. Sci Total Environ. 957: 177521. https://doi.org/10.1016/j.scitotenv.2024.177521

Mahyati, & Azis, A. 2019. Optimization of temperature and time in carrageenan extraction of seaweed (Kappaphycus alvarezii) using ultrasonic wave extraction methods. IOP Conference Series: Earth and Environmental Science. 370(1): 012076. https://doi.org/10.1088/1755-1315/370/1/012076

Mariot, L. V., Bolívar, N., Coelho, J. D. R., Goncalves, P., Colombo, S. M., do Nascimento, F. V., Schleder, D. D., & Hayashi, L. 2021. Diets supplemented with carrageenan increase the resistance of the Pacific white shrimp to WSSV without changing its growth performance parameters. Aquaculture. 545: 737172. https://doi.org/10.1016/j.aquaculture.2021.737172

Martín-del-Campo, A., Fermín-Jiménez, J. A., Fernández-Escamilla, V. V., Escalante-García, Z. Y., Macías-Rodríguez, M. E., & Estrada-Girón, Y. 2021. Improved extraction of carrageenan from red seaweed (Chondracantus canaliculatus) using ultrasound-assisted methods and evaluation of the yield, physicochemical properties and functional groups. Food Science and Biotechnology. 30(7): 901-910. https://doi.org/10.1007/s10068-021-00935-7

McKim, J. M. 2014. Food additive carrageenan: Part I: A critical review of carrageenan in vitro studies, potential pitfalls, and implications for human health and safety. Critical Reviews in Toxicology. 44(3): 211-243. https://doi.org/10.3109/10408444.2013.861797

Nurani, W., Anwar, Y., Batubara, I., Arung, E. T., & Fatriasari, W. 2024. Kappaphycus alvarezii as a renewable source of kappa-carrageenan and other cosmetic ingredients. Int J Biol Macromol. 260: 129458. https://doi.org/10.1016/j.ijbiomac.2024.129458

Prajapati, V. D., Maheriya, P. M., Jani, G. K., & Solanki, H. K. 2014. RETRACTED: Carrageenan: A natural seaweed polysaccharide and its applications. Carbohydr Polym. 105: 97-112. https://doi.org/10.1016/j.carbpol.2014.01.067

Pramudyo, V. H. F., Yudiati, E., & Sedjati, S. 2024. Formulation of Ascorbic Acid and Skim Milk in Feed for Salinity Stress in Artemia sp. J Mar Biotechnol Immunol. 2(1): 15-18. https://doi.org/10.61741/1q13ca16

Premarathna, A. D., Ahmed, T. A. E., Kulshreshtha, G., Humayun, S., Shormeh Darko, C. N., Rjabovs, V., Hammami, R., Critchley, A. T., Tuvikene, R., & Hincke, M. T. 2024. Polysaccharides from red seaweeds: Effect of extraction methods on physicochemical characteristics and antioxidant activities. Food Hydrocolloids. 147: 109307. https://doi.org/10.1016/j.foodhyd.2023.109307

Romadhona, B., Yulianto, B., & Sudarno, S. 2016. Fluctuations of Ammonia and Pollution load in Intensive Vannamei Shrimp Pond Harvested Using Partial and Total Method. Saintek Perikanan : Indonesian Journal of Fisheries Science and Technology. 11(2): 10. https://doi.org/10.14710/ijfst.11.2.84-93

Rudke, A. R., da Silva, M., Andrade, C. J. d., Vitali, L., & Ferreira, S. R. S. 2022. Green extraction of phenolic compounds and carrageenan from the red alga Kappaphycus alvarezii. Algal Research. 67: 102866. https://doi.org/10.1016/j.algal.2022.102866

Rupert, R., Rodrigues, K. F., Thien, V. Y., & Yong, W. T. L. 2022. Carrageenan From Kappaphycus alvarezii (Rhodophyta, Solieriaceae): Metabolism, Structure, Production, and Application. Front Plant Sci. 13: 859635. https://doi.org/10.3389/fpls.2022.859635

Salay, G., Lucarelli, N., Gascón, T. M., Carvalho, S. S., Veiga, G., Reis, B., & Fonseca, F. L. A. 2024. Acute Toxicity Assays with the Artemia salina Model: Assessment of Variables. Altern Lab Anim. 52(3): 142-148. https://doi.org/10.1177/02611929241242443

Shafie, M. H., Kamal, M. L., Zulkiflee, F. F., Hasan, S., Uyup, N. H., Abdullah, S., Mohamed Hussin, N. A., Tan, Y. C., & Zafarina, Z. 2022. Application of Carrageenan extract from red seaweed (Rhodophyta) in cosmetic products: A review. Journal of the Indian Chemical Society. 99(9): 100613. https://doi.org/10.1016/j.jics.2022.100613

Sunaryo, S., Saputra, A. O., Hidayati, J. R., & Susetya, I. E. 2024. Extraction of Sulfated Polysaccharides from Ulva sp. Using Acid and Toxicity Testing with the Brine Shrimp Lethality Test (BSLT). Journal of Marine Biotechnology and Immunology. 2(3): 36-41. https://doi.org/10.61741/rtj7qn57

Suryono, C. A., Santoso, A., Yudiati, E., Yulianto, B., Sunaryo, S., Azhar, N., & Alghazeer, R. 2024. The Impact of Varying Alginate Co-activation with Probiotics on the Artemia Bioencapsulation to Enhance Immunity Against Vibrio spp. ILMU KELAUTAN: Indonesian Journal of Marine Sciences. 29(3): 13. https://doi.org/10.14710/ik.ijms.29.3.372-384

Suwoyo, H. S., & Hendrajat, E. A. 2021. High density aquaculture of white shrimp (Litopenaeus vannamei) in controlled tank. IOP Conference Series: Earth and Environmental Science. 777(1): 012022. https://doi.org/10.1088/1755-1315/777/1/012022

Suwoyo, H. S., & Tampangallo, B. R. 2015. Perkembangan populasi bakteri pada media budidaya udang vaname (Litopenaeus vannamei) dengan penambahan sumber karbon berbeda. Octopus. 4(1): 365-374.

Takarina, N. D., & Wardhana, W. 2017. Relationship between cyanobacteria community and water quality parameters on intertidal zone of fish ponds, Blanakan, West Java. AIP Conference Proceedings. 1862(1). https://doi.org/10.1063/1.4991218

Thawabteh, A. M., Naseef, H. A., Karaman, D., Bufo, S. A., Scrano, L., & Karaman, R. 2023. Understanding the Risks of Diffusion of Cyanobacteria Toxins in Rivers, Lakes, and Potable Water. Toxins (Basel). 15(9). https://doi.org/10.3390/toxins15090582

Wagner, R., Buettner, J., Heni, M., Fritsche, L., Kullmann, S., Wagmüller, M., Peter, A., Preissl, H., Machann, J., Jumpertz von Schwartzenberg, R., Birkenfeld, A. L., Pape, U. F., van Hall, G., Plomgaard, P., Häring, H. U., Fritsche, A., Thompson, K. N., Klein, R., & Stefan, N. 2024. Carrageenan and insulin resistance in humans: a randomised double-blind cross-over trial. BMC Med. 22(1): 558. https://doi.org/10.1186/s12916-024-03771-8

Webber, V., Carvalho, S., Ogliari, P., Hayashi, L., & Luiz Manique Barreto, P. 2012. Optimization of the extraction of carrageenan from Kappaphycus alvarezii using response surface methodology. Food Science and Technology (Campinas). 32: 812-818. https://doi.org/10.1590/S0101-20612012005000111

Yudiati, E., Arifin, Z., Santoso, A., Hidayati, J. R., Alghazeer, R., & Azhar, N. 2023. Artemia with Synbiotics Enrichment Improves Resistance Against Vibrio parahaemolyticus AHPND of Litopenaeus vannamei Larvae. Buletin Oseanografi Marina. 12(3): 8. https://doi.org/10.14710/buloma.v12i3.52523

Yudiati, E., Santosa, G. W., Tontowi, M. R., Sedjati, S., Supriyantini, E., & Khakimah, M. 2018. Optimization of alginate alkaline extraction technology from Sargassum polycystum and its antioxidant properties. IOP Conference Series: Earth and Environmental Science. 139: 012052. https://doi.org/10.1088/1755-1315/139/1/012052

Yudiati, E., Sedjati, S., Azhar, N., Oktarima, W. A., & Arifin, Z. 2021a. Spirulina water extract and Lactobacillus bulgaricus FNCC– 0041, Streptococcus thermophilus FNCC–0040 secretion as immunostimulants in gnotobiotic Artemia challenge tests against pathogenic Vibrio parahaemolyticus, V. vulnificus, and V. harveyi. IOP Conference Series: Earth and Environmental Science. 890(1): 012018. https://doi.org/10.1088/1755-1315/890/1/012018

Yudiati, E., Wijayanti, D. P., Azhar, N., Chairunnisa, A. I., Sedjati, S., & Arifin, Z. 2021b. Alginate oligosaccharide/polysaccharide and lactic acid bacteria (Lactobacillus bulgaricus FNCC–0041 & Streptococcus thermophilus FNCC–0040) as immunostimulants against pathogenic Vibrio spp. using Artemia bio model. IOP Conference Series: Earth and Environmental Science. 919(1): 012060. https://doi.org/10.1088/1755-1315/919/1/012060

Zia, K. M., Tabasum, S., Nasif, M., Sultan, N., Aslam, N., Noreen, A., & Zuber, M. 2017. A review on synthesis, properties and applications of natural polymer based carrageenan blends and composites. Int J Biol Macromol. 96: 282-301. https://doi.org/10.1016/j.ijbiomac.2016.11.095

Downloads

Published

2025-01-31

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Issue

Section

Marine Biotechnology and Immunology

How to Cite

Damayanti, M. ., Salma, U. ., Susetya, I. E. ., & Ighwerb, M. I. . (2025). Evaluation of Carrageenan Yield and Toxicity from Kappaphycus alvarezii: Implications for Aquaculture and Environmental Impact. Journal of Marine Biotechnology and Immunology, 3(1), 25-31. https://doi.org/10.61741/5r66rh88

Similar Articles

You may also start an advanced similarity search for this article.