Extraction of Sulfated Polysaccharides from Ulva sp. Using Acid and Toxicity Testing with the Brine Shrimp Lethality Test (BSLT)
DOI:
https://doi.org/10.61741/rtj7qn57Keywords:
Sulfated Polysaccharides, Ulva sp, Artemia salina, Brine Shrimp Lethality TestAbstract
This study investigates the extraction of sulfated polysaccharides from Ulva sp. at pH 3 and evaluates their toxicity using the Brine Shrimp Lethality Test (BSLT) with Artemia salina. Artemia salina is utilized for its rapid life cycle and sensitivity to various chemical compounds, making it an effective bioassay organism for assessing the toxicity of natural extracts. The extraction process was conducted at both hot (80°C) and cold (room temperature) conditions, with the hot extraction yielding higher amounts of polysaccharides. The results indicated a wet extraction yield of 890 mL at 80°C and 800 mL at room temperature, while the highest dry weight yield was achieved at 80°C (0.57 g). The toxicity assessment revealed an LC50 value of 15,815.85 ppm, classifying the sulfated polysaccharides as non-toxic to Artemia salina. Maintaining optimal water quality parameters, including temperature, salinity, pH, and dissolved oxygen levels, is essential for the successful cultivation of Artemia salina. Furthermore, the acidic extraction pH significantly influences the structure and chemical properties of the resulting polysaccharides, emphasizing the importance of this parameter in future applications. These findings support the potential use of sulfated polysaccharides from Ulva sp. as a safe and effective feed ingredient in aquaculture.
Downloads
References
Antonisamy, A. J., & Rajendran, K. 2024. Comparative study on the extraction methods, characterization, and bioactivity of crude fucoidan, a polysaccharide derived from Sargassum ilicifolium. Biochemical Engineering Journal. 209: 109398. https://doi.org/10.1016/j.bej.2024.109398
Ara, J., Sultana, V., Ehteshamul-Haque, S., Qasim, R., & Ahmad, V. U. 1999. Cytotoxic activity of marine macro-algae on Artemia salina (Brine shrimp). Phytotherapy Research. 13(4): 304-307. https://doi.org/10.1002/(SICI)1099-1573(199906)13:4<304::AID-PTR439>3.0.CO;2-9
Arun, V. V., Saharan, N., Ramasubramanian, V., Babitha Rani, A. M., Salin, K. R., Sontakke, R., Haridas, H., & Pazhayamadom, D. G. 2017. Multi-response optimization of Artemia hatching process using split-split-plot design based response surface methodology. Sci Rep. 7: 40394. https://doi.org/10.1038/srep40394
Azhar, N., Yudiati, E., Ambariyanto, & Trianto, A. 2024a. The Effect of Enhancing Ulvan's Antioxidant Properties in Supplemented Diets on Accelerating The Phenoloxidase Immune Response in White Shrimp. HAYATI Journal of Biosciences. 31(6): 1116-1129. https://doi.org/10.4308/hjb.31.6.1116-1129
Azhar, N., Yudiati, E., Ambariyanto, A., & Trianto, A. 2024b. Immunostimulatory Effects of Ulvan on Trypsin-Mediated Protein Digestion in The Gut of Pacific Whiteleg Shrimp (Litopenaeus vannamei). Jurnal Riset Akuakultur. 19(1): 45-56. http://dx.doi.org/10.15578/jra.19.1.2024.45-56
Banti, C. N., & Hadjikakou, S. K. 2021. Evaluation of Toxicity with Brine Shrimp Assay. Bio Protoc. 11(2): e3895. https://doi.org/10.21769/BioProtoc.3895
Briski, E., Van Stappen, G., Bossier, P., & Sorgeloos, P. 2008. Laboratory production of early hatching Artemia sp. cysts by selection. Aquaculture. 282(1): 19-25. https://doi.org/10.1016/j.aquaculture.2008.06.034
Cindana Mo’o, F. R., Wilar, G., Devkota, H. P., & Wathoni, N. 2020. Ulvan, a Polysaccharide from Macroalga Ulva sp.: A Review of Chemistry, Biological Activities and Potential for Food and Biomedical Applications. Appl Sci. 10(16): 5488. https://doi.org/10.3390/app10165488
Dey, P., Bradley, T. M., & Boymelgreen, A. 2023. The impact of selected abiotic factors on Artemia hatching process through real-time observation of oxygen changes in a microfluidic platform. Sci Rep. 13(1): 6370. https://doi.org/10.1038/s41598-023-32873-1
Gajardo, G. M., & Beardmore, J. A. 2012. The brine shrimp artemia: adapted to critical life conditions. Front Physiol. 3: 185. https://doi.org/10.3389/fphys.2012.00185
He, J., Xu, Y., Chen, H., & Sun, P. 2016. Extraction, Structural Characterization, and Potential Antioxidant Activity of the Polysaccharides from Four Seaweeds. Int J Mol Sci. 17(12). https://doi.org/10.3390/ijms17121988
Kadam, S. U., Álvarez, C., Tiwari, B. K., & O'Donnell, C. P. 2017. Extraction and characterization of protein from Irish brown seaweed Ascophyllum nodosum. Food Research International. 99: 1021-1027. https://doi.org/10.1016/j.foodres.2016.07.018
Kidgell, J. T., Magnusson, M., de Nys, R., & Glasson, C. R. K. 2019. Ulvan: A systematic review of extraction, composition and function. Algal Research. 39: 101422. https://doi.org/10.1016/j.algal.2019.101422
Li, C., Tang, T., Du, Y., Jiang, L., Yao, Z., Ning, L., & Zhu, B. 2023. Ulvan and Ulva oligosaccharides: a systematic review of structure, preparation, biological activities and applications. Bioresour Bioprocess. 10(1): 66. https://doi.org/10.1186/s40643-023-00690-z
Lomartire, S., & Gonçalves, A. M. M. 2022. Novel Technologies for Seaweed Polysaccharides Extraction and Their Use in Food with Therapeutically Applications-A Review. Foods. 11(17). https://doi.org/10.3390/foods11172654
Meyer, B. N., Ferrigni, N. R., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & McLaughlin, J. L. 1982. Brine shrimp: a convenient general bioassay for active plant constituents. Planta Med. 45(5): 31-34. https://doi.org/10.1055/s-2007-971236
Pacheco-Vega, J., Cadena, M., Ascencio, F., Rangel-Dávalos, C., & Rojas, M. 2015. Assessment of endemic microalgae as potential food for Artemia franciscana culture. Latin american journal of aquatic research. 43: 23-32. https://doi.org/10.3856/vol43-issue1-fulltext-3
Phomkaivon, N., Pongponpai, P., Kosawatpat, P., Thongdang, B., & Pan-Utai, W. 2024. Extraction, Characterisation and Evaluation of Antioxidant and Probiotic Growth Potential of Water-Soluble Polysaccharides from Ulva rigida Macroalgae. Foods. 13(11). https://doi.org/10.3390/foods13111630
Rajabi, S., Ramazani, A., Hamidi, M., & Naji, T. 2015. Artemia salina as a model organism in toxicity assessment of nanoparticles. Daru. 23(1): 20. https://doi.org/10.1186/s40199-015-0105-x
Rickwood, D., & Birnie, G. D. (1978). 1 - Introduction: Principles and Practices of Centrifugation. In G. D. Birnie & D. Rickwood (Eds.), Centrifugal Separations in Molecular and Cell Biology (pp. 1-6). Butterworth-Heinemann. https://www.sciencedirect.com/science/article/pii/B9780408708036500054 https://doi.org/https://doi.org/10.1016/B978-0-408-70803-6.50005-4
Salay, G., Lucarelli, N., Gascón, T. M., Carvalho, S. S., Veiga, G., Reis, B., & Fonseca, F. L. A. 2024. Acute Toxicity Assays with the Artemia salina Model: Assessment of Variables. Altern Lab Anim. 52(3): 142-148. https://doi.org/10.1177/02611929241242443
Sari, Y. W., Mulder, W. J., Sanders, J. P. M., & Bruins, M. E. 2015. Towards plant protein refinery: Review on protein extraction using alkali and potential enzymatic assistance. Biotechnology Journal. 10(8): 1138-1157. https://doi.org/10.1002/biot.201400569
Setianingsih, N. L. P. P., Sudiarta, I. W., Andriani, A. A. S. P. R., Jiwantara, G. N. O., Djelantik, S. A. M. A. P., & Darmawan, K. D. R. 2023. Toxicity Test of Moringa (Moringa Oleifera Lam) Essential Oil with the Brine Shrimp Lethality Test (BSLT) Method. International Journal of Scientific Multidisciplinary Research. 1(6): 627-640. https://doi.org/10.55927/ijsmr.v1i6.5255
Thirunavukkarasu, S., & Munuswamy, N. 2019. Do environmental factors influence the morphotypes in Artemia franciscana Kellogg, 1906 (Crustacea: Anostraca)? SN Applied Sciences. 1(4): 282. https://doi.org/10.1007/s42452-019-0291-0
Tran, V. H. N., Mikkelsen, M. D., Truong, H. B., Vo, H. N. M., Pham, T. D., Cao, H. T. T., Nguyen, T. T., Meyer, A. S., Thanh, T. T. T., & Van, T. T. T. 2023. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva papenfussii. Mar Drugs. 21(11). https://doi.org/10.3390/md21110556
Vijayaram, S., Ringø, E., Ghafarifarsani, H., Hoseinifar, S. H., Ahani, S., & Chou, C.-C. 2024. Use of Algae in Aquaculture: A Review. Fishes. 9(2): 63. https://doi.org/10.3390/fishes9020063
Vijayaram, S., Ringø, E., Zuorro, A., van Doan, H., & Sun, Y. 2023. Beneficial roles of nutrients as immunostimulants in aquaculture: A review. Aquaculture and Fisheries. https://doi.org/10.1016/j.aaf.2023.02.001
Yaich, H., Garna, H., Besbes, S., Barthélemy, J.-P., Paquot, M., Blecker, C., & Attia, H. 2014. Impact of extraction procedures on the chemical, rheological and textural properties of ulvan from Ulva lactuca of Tunisia coast. Food Hydrocoll. 40: 53-63. https://doi.org/10.1016/j.foodhyd.2014.02.002
Yaich, H., Garna, H., Besbes, S., Paquot, M., Blecker, C., & Attia, H. 2013. Effect of extraction conditions on the yield and purity of ulvan extracted from Ulva lactuca. Food Hydrocoll. 31(2): 375-382. https://doi.org/10.1016/j.foodhyd.2012.11.013
Zhou, P., Eid, M., Xiong, W., Ren, C., Ai, T., Deng, Z., Li, J., & Li, B. 2020. Comparative study between cold and hot water extracted polysaccharides from Plantago ovata seed husk by using rheological methods. Food Hydrocolloids. 101: 105465. https://doi.org/10.1016/j.foodhyd.2019.105465
Downloads
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author, upon reasonable request.
Issue
Section
License
Copyright (c) 2024 Journal of Marine Biotechnology and Immunology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.