Impact of Water Quality and Phytoplankton on Juvenile Vannamei Shrimp Growth in Low-Salinity Ponds

Authors

  • Eny Heriyati Kutai Timur Agricultural College Author
  • Muhammad Bahrul Ilmi Diponegoro University Author
  • Chrisna Adhi Suryono Diponegoro University Author

DOI:

https://doi.org/10.61741/af5rq076

Keywords:

Aquaculture, Growth rate, Phytoplankton, Litopenaeus vannamei, Water quality

Abstract

The Vannamei shrimp (Litopenaeus vannamei) is a key species in global aquaculture, with its growth influenced by various environmental factors and nutritional quality. This study aimed to analyze water quality parameters and phytoplankton density, as well as assess the growth of juvenile Vannamei shrimp in circular ponds with low salinity (5-6 ppt). Shrimp were stocked at a density of 80 individuals per square meter in 5-ton capacity tanks and fed four times daily over a 30-day period. Water quality parameters, including temperature, dissolved oxygen, pH, and light intensity, were monitored bi-daily, revealing fluctuations that impacted shrimp health. Notably, plankton density assessments showed Cyclotella present on day 14 but absent on day 28, while Microcystis and Rhizosolenia were detected on day 28, indicating shifts in the phytoplankton community. The specific growth rate (SGR) of shrimp was measured at 18.69% per day, with initial and final weights recorded at 0.01 ± 0.00 g and 2.72 ± 0.23 g, respectively. This study highlights the importance of maintaining optimal water quality and understanding phytoplankton dynamics for enhancing shrimp growth. Additionally, it explores the potential benefits of alginate supplementation and the effects of low salinity on the growth of juvenile Vannamei shrimp, contributing valuable insights for sustainable aquaculture practices.

Downloads

Download data is not yet available.

Author Biographies

  • Eny Heriyati, Kutai Timur Agricultural College

    Marine Science Study Program, Kutai Timur Agricultural College Jl. Soekarno Hatta No 02, East Kalimantan, 75387, Indonesia

  • Muhammad Bahrul Ilmi, Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia

  • Chrisna Adhi Suryono , Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia

References

Abdel-Moez, A. M., Ali, M. M., El-gandy, G., Mohammady, E. Y., Jarmołowicz, S., El-Haroun, E., Elsaied, H. E., & Hassaan, M. S. 2024. Effect of including dried microalgae Cyclotella menegheniana on the reproductive performance, lipid metabolism profile and immune response of Nile tilapia broodstock and offspring. Aquaculture Reports. 36: 102099. https://doi.org/10.1016/j.aqrep.2024.102099

Abdelrahman, H. A., Abebe, A., & Boyd, C. E. 2019. Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture. Aquaculture Research. 50(2): 658-672. https://doi.org/10.1111/are.13943

Ariadi, H., Fadjar, M., Mahmudi, M., & Supriatna, S. 2019. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. AACL Bioflux. 12: 2103-2216.

Ario, R., & Nursani, I. A. 2024. Influence of Water Quality and Phytoplankton Community on the Growth of Litopenaeus vannamei in Low-Salinity Semi-Mass Circular Ponds. Journal of Marine Biotechnology and Immunology. 2(2): 7-12. 10.61741/7kkn2e98

Azhar, N., & Yudiati, E. 2023. Outbreak simulation of Litopenaeus vannamei recovery rate with oral alginate and spirulina diet supplementation against Vibrio parahaemolyticus AHPND. Aquacult Int. 31(3): 1659-1676. https://doi.org/10.1007/s10499-023-01050-6

Azizah, K. N., & Samaadan, G. M. 2024. Analysis of the Relationship between Water Quality Parameters and Phytoplankton Communities on the Growth of Litopenaeus vannamei Post-Larvae in Low Salinity Circular Ponds. Journal of Marine Biotechnology and Immunology. 2(1): 24-29. 10.61741/b3fwzr29

Banerjee, A., Chakrabarty, M., Rakshit, N., Bhowmick, A. R., & Ray, S. 2019. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecological Indicators. 100: 99-117. https://doi.org/10.1016/j.ecolind.2018.09.051

Boyd, C. 2015. Water Quality: An Introduction. https://doi.org/10.1007/978-3-319-17446-4

Boyd, C., & Pillai, V. 1985. Water Quality Management in Aquaculture.

Boyd, C. E. 2019. Water quality: an introduction. Springer Nature.

Boyd, C. E., & McNevin, A. A. (2015). Water Use by Aquaculture Systems. In Aquaculture, Resource Use, and the Environment (pp. 101-122). Retrieved 2024/05/27, from https://doi.org/10.1002/9781118857915.ch6

Chen, G., Liu, B., Chen, J., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., Zhang, S., & Yao, M. 2022. Supplementing Sulfate-Based Alginate Polysaccharide Improves Pacific White Shrimp (Litopenaeus vannamei) Fed Fishmeal Replacement with Cottonseed Protein Concentrate: Effects on Growth, Intestinal Health, and Disease Resistance. Aquaculture Nutrition. 2022(1): 7132362. https://doi.org/10.1155/2022/7132362

Damsté, J. S. S., Schouten, S., Rijpstra, W. I. C., Hopmans, E. C., Peletier, H., Gieskes, W. W. C., & Geenevasen, J. A. J. 2000. Novel polyunsaturated n-alkenes in the marine diatom Rhizosolenia setigera. European Journal of Biochemistry. 267(18): 5727-5732. https://doi.org/10.1046/j.1432-1327.2000.01636.x

Genkal, S. I. 2012. Morphology, taxonomy, ecology, and distribution of Cyclotella choctawhatcheeana prasad (Bacillariophyta). Inland Water Biology. 5(2): 169-177. https://doi.org/10.1134/S1995082912020046

Jaffer, Y. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S., & Sharma, P. C. 2020. Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture. 515: 734561. https://doi.org/10.1016/j.aquaculture.2019.734561

Jahan, S. 2023. The Role of Phytoplanktons in the Environment and in Human Life, a Review. BASRA JOURNAL OF SCIENCE. 41: 392-411. 10.29072/basjs.20230212

Jia, J., Chen, Q., Ren, H., Lu, R., He, H., & Gu, P. 2022. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. Int J Environ Res Public Health. 19(5). 10.3390/ijerph19053135

Kilham, P., & Hecky, R. E. 1988. Comparative ecology of marine and freshwater phytoplankton1. Limnology and Oceanography. 33(4part2): 776-795. https://doi.org/10.4319/lo.1988.33.4part2.0776

Lad, A., Breidenbach, J. D., Su, R. C., Murray, J., Kuang, R., Mascarenhas, A., Najjar, J., Patel, S., Hegde, P., Youssef, M., Breuler, J., Kleinhenz, A. L., Ault, A. P., Westrick, J. A., Modyanov, N. N., Kennedy, D. J., & Haller, S. T. 2022. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel). 12(3). 10.3390/life12030418

Laramore, S., Laramore, C. R., & Scarpa, J. 2001. Effect of Low Salinity on Growth and Survival of Postlarvae and Juvenile Litopenaeus vannamei. Journal of the World Aquaculture Society. 32(4): 385-392. https://doi.org/10.1111/j.1749-7345.2001.tb00464.x

Le Manach, S., Duval, C., Marie, A., Djediat, C., Catherine, A., Edery, M., Bernard, C., & Marie, B. 2019. Global Metabolomic Characterizations of Microcystis spp. Highlights Clonal Diversity in Natural Bloom-Forming Populations and Expands Metabolite Structural Diversity. Front. Microbiol. 10. 10.3389/fmicb.2019.00791

Le, V. V., Ko, S.-R., Kang, M., Oh, H.-M., & Ahn, C.-Y. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15. Journal of Cleaner Production. 383: 135408. https://doi.org/10.1016/j.jclepro.2022.135408

Lee, K. H., Jeong, H. J., Lee, K., Franks, P., Seong, K., Lee, S. Y., Lee, M. J., Jang, S. H., Potvin, E., Lim, A. S., Yoon, E., Yoo, Y., Kang, N., & Kim, K. Y. 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae. 81: 106-118. 10.1016/j.hal.2018.11.017

LeGresley, M., & McDermott, G. 2010. Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis: 25-30.

Lemos, D., & Weissman, D. 2021. Moulting in the grow-out of farmed shrimp: a review. Reviews in Aquaculture. 13(1): 5-17. https://doi.org/10.1111/raq.12461

Liao, I. C., & Chien, Y.-H. (2011). The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. In B. S. Galil, P. F. Clark, & J. T. Carlton (Eds.), In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 489-519). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_17 https://doi.org/10.1007/978-94-007-0591-3_17

Lyu, T., Yang, W., Cai, H., Wang, J., Zheng, Z., & Zhu, J. 2021. Phytoplankton community dynamics as a metrics of shrimp healthy farming under intensive cultivation. Aquaculture Reports. 21: 100965. https://doi.org/10.1016/j.aqrep.2021.100965

Menon, S. V., Kumar, A., Middha, S. K., Paital, B., Mathur, S., Johnson, R., Kademan, A., Usha, T., Hemavathi, K. N., Dayal, S., Ramalingam, N., Subaramaniyam, U., Sahoo, D. K., & Asthana, M. 2023. Water physicochemical factors and oxidative stress physiology in fish, a review. 11. 10.3389/fenvs.2023.1240813

Mugwanya, M., Dawood, M. A. O., Kimera, F., & Sewilam, H. 2022. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquaculture and Fisheries. 7(3): 223-243. https://doi.org/10.1016/j.aaf.2021.12.005

Mustika, P., Ren, F., Kasprijo, & Yasmin, M. 2023. Phytoplankton Community in Vannamei Shrimp (Litopenaeus vannamei) Cultivation in Intensive Ponds. IRAQI JOURNAL OF AGRICULTURAL SCIENCES. 54(1): 134-146. 10.36103/ijas.v54i1.1684

Naselli-Flores, L., & Padisák, J. 2023. Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia. 850(12-13): 2691-2706. 10.1007/s10750-022-04795-y

Nieri, P., Carpi, S., Esposito, R., Costantini, M., & Zupo, V. 2023. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients. 15(2). 10.3390/nu15020464

Pradhan, B., Kim, H., Abassi, S., & Ki, J. S. 2022. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel). 14(6). 10.3390/toxins14060397

Reynolds, C. S. 1984. The ecology of freshwater phytoplankton.

Ridlo, A., Firdaus, M. L. M., & Sumarwan, J. 2024. Growth of Litopenaeus vannamei using Synbiotics Supplementation Diet in Outdoor Low-Salinity Ponds Concerning Water Quality Parameters and Phytoplankton Communities. Journal of Marine Biotechnology and Immunology. 2(2): 32-36. 10.61741/d2wnd591

Rodríguez-Olague, D., Ponce-Palafox, J. T., Castillo-Vargasmachuca, S. G., Arámbul-Muñoz, E., de los Santos, R. C., & Esparza-Leal, H. M. 2021. Effect of nursery system and stocking density to produce juveniles of whiteleg shrimp Litopenaeus vannamei. Aquaculture Reports. 20: 100709. https://doi.org/10.1016/j.aqrep.2021.100709

Rojo-Arreola, L., García-Carreño, F., Romero, R., & Díaz Dominguez, L. 2020. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. PLoS One. 15(9): e0239413. 10.1371/journal.pone.0239413

Rowland, S. J., Allard, W. G., Belt, S. T., Massé, G., Robert, J. M., Blackburn, S., Frampton, D., Revill, A. T., & Volkman, J. K. 2001. Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry. 58(5): 717-728. https://doi.org/10.1016/S0031-9422(01)00318-1

Seidman, E. R., & Lawrence, A. L. 1985. Growth. Feed Digestibility, And Proximate Body Composition Of Juvenile Penaeus vannamei And Penaeus monodon Grown At Different Dissolved Oxygen Levels. J World Aquac Soc. 16(1-4): 333-346. https://doi.org/10.1111/j.1749-7345.1985.tb00214.x

Villareal, T. A. 1988. Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo. Deep Sea Research Part A. Oceanographic Research Papers. 35(6): 1037-1045. https://doi.org/10.1016/0198-0149(88)90075-1

Wilhelm, S. W., Bullerjahn, G. S., & McKay, R. M. L. 2020. The Complicated and Confusing Ecology of Microcystis Blooms. mBio. 11(3). 10.1128/mBio.00529-20

Willén, E. 1976. A simplified method of phytoplankton counting. British Phycological Journal. 11(3): 265-278. https://doi.org/10.1080/00071617600650551

Wyban, J., Walsh, W. A., & Godin, D. M. 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138(1): 267-279. https://doi.org/10.1016/0044-8486(95)00032-1

Yu, Q., Xie, J., Huang, M., Chen, C., Qian, D., Qin, J. G., Chen, L., Jia, Y., & Li, E. 2020. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquaculture Reports. 16: 100280. https://doi.org/10.1016/j.aqrep.2020.100280

Yudiati, E., Isnansetyo, A., Murwantoko, Ayuningtyas, Triyanto, & Handayani, C. R. 2016. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 54: 46. https://doi.org/10.1016/j.fsi.2016.03.022

Yudiati, E., Isnansetyo, A., Murwantoko, Triyanto, & Handayani, C. R. 2019. Alginate from Sargassum siliquosum simultaneously stimulates innate immunity, upregulates immune genes, and enhances resistance of Pacific white shrimp (Litopenaeus vannamei) against white spot syndrome virus (WSSV). Mar Biotechnol. 21(4): 503. https://doi.org/10.1007/s10126-019-09898-7

Yun, S. M., Lee, S. D., & Lee, J. 2011. Morphology and distribution of some marine diatoms, Family Rhizosoleniaceae, in Korean coastal waters: a genus Rhizosolenia 1. Algae. 26: 141-152. 10.4490/algae.2011.26.2.141

Yung, Y. K., Nicholls, K. H., & Cheng, A. G. 1988. The detection of Rhizosolenia (Bacillariophyceae) in sediment of Ontario lakes and implications for paleoecology. Journal of Paleolimnology. 1(1): 61-69. 10.1007/BF00202194

Yusoff, F. M., Umi, W. A. D., Ramli, N. M., & Harun, R. 2024. Water quality management in aquaculture. Cambridge Prisms: Water. 2: e8. 10.1017/wat.2024.6

Zohary, T., Yacobi, Y. Z., Alster, A., Fishbein, T., Lippman, S., & Tibor, G. (2014). Phytoplankton. In T. Zohary, A. Sukenik, T. Berman, & A. Nishri (Eds.), Lake Kinneret: Ecology and Management (pp. 161-190). Springer Netherlands. https://doi.org/10.1007/978-94-017-8944-8_10 https://doi.org/10.1007/978-94-017-8944-8_10

Downloads

Published

2024-09-30

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Issue

Section

Marine Biotechnology and Immunology

How to Cite

Heriyati, E. ., Ilmi, M. B. ., & Suryono , C. A. . (2024). Impact of Water Quality and Phytoplankton on Juvenile Vannamei Shrimp Growth in Low-Salinity Ponds. Journal of Marine Biotechnology and Immunology, 2(3), 6-11. https://doi.org/10.61741/af5rq076

Similar Articles

1-10 of 18

You may also start an advanced similarity search for this article.