Impact of Water Quality and Phytoplankton on Juvenile Vannamei Shrimp Growth in Low-Salinity Ponds
DOI:
https://doi.org/10.61741/af5rq076Keywords:
Aquaculture, Growth rate, Phytoplankton, Litopenaeus vannamei, Water qualityAbstract
The Vannamei shrimp (Litopenaeus vannamei) is a key species in global aquaculture, with its growth influenced by various environmental factors and nutritional quality. This study aimed to analyze water quality parameters and phytoplankton density, as well as assess the growth of juvenile Vannamei shrimp in circular ponds with low salinity (5-6 ppt). Shrimp were stocked at a density of 80 individuals per square meter in 5-ton capacity tanks and fed four times daily over a 30-day period. Water quality parameters, including temperature, dissolved oxygen, pH, and light intensity, were monitored bi-daily, revealing fluctuations that impacted shrimp health. Notably, plankton density assessments showed Cyclotella present on day 14 but absent on day 28, while Microcystis and Rhizosolenia were detected on day 28, indicating shifts in the phytoplankton community. The specific growth rate (SGR) of shrimp was measured at 18.69% per day, with initial and final weights recorded at 0.01 ± 0.00 g and 2.72 ± 0.23 g, respectively. This study highlights the importance of maintaining optimal water quality and understanding phytoplankton dynamics for enhancing shrimp growth. Additionally, it explores the potential benefits of alginate supplementation and the effects of low salinity on the growth of juvenile Vannamei shrimp, contributing valuable insights for sustainable aquaculture practices.
Downloads
References
Abdel-Moez, A. M., Ali, M. M., El-gandy, G., Mohammady, E. Y., Jarmołowicz, S., El-Haroun, E., Elsaied, H. E., & Hassaan, M. S. 2024. Effect of including dried microalgae Cyclotella menegheniana on the reproductive performance, lipid metabolism profile and immune response of Nile tilapia broodstock and offspring. Aquaculture Reports. 36: 102099. https://doi.org/10.1016/j.aqrep.2024.102099
Abdelrahman, H. A., Abebe, A., & Boyd, C. E. 2019. Influence of variation in water temperature on survival, growth and yield of Pacific white shrimp Litopenaeus vannamei in inland ponds for low-salinity culture. Aquaculture Research. 50(2): 658-672. https://doi.org/10.1111/are.13943
Ariadi, H., Fadjar, M., Mahmudi, M., & Supriatna, S. 2019. The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. AACL Bioflux. 12: 2103-2216.
Ario, R., & Nursani, I. A. 2024. Influence of Water Quality and Phytoplankton Community on the Growth of Litopenaeus vannamei in Low-Salinity Semi-Mass Circular Ponds. Journal of Marine Biotechnology and Immunology. 2(2): 7-12. 10.61741/7kkn2e98
Azhar, N., & Yudiati, E. 2023. Outbreak simulation of Litopenaeus vannamei recovery rate with oral alginate and spirulina diet supplementation against Vibrio parahaemolyticus AHPND. Aquacult Int. 31(3): 1659-1676. https://doi.org/10.1007/s10499-023-01050-6
Azizah, K. N., & Samaadan, G. M. 2024. Analysis of the Relationship between Water Quality Parameters and Phytoplankton Communities on the Growth of Litopenaeus vannamei Post-Larvae in Low Salinity Circular Ponds. Journal of Marine Biotechnology and Immunology. 2(1): 24-29. 10.61741/b3fwzr29
Banerjee, A., Chakrabarty, M., Rakshit, N., Bhowmick, A. R., & Ray, S. 2019. Environmental factors as indicators of dissolved oxygen concentration and zooplankton abundance: Deep learning versus traditional regression approach. Ecological Indicators. 100: 99-117. https://doi.org/10.1016/j.ecolind.2018.09.051
Boyd, C. 2015. Water Quality: An Introduction. https://doi.org/10.1007/978-3-319-17446-4
Boyd, C., & Pillai, V. 1985. Water Quality Management in Aquaculture.
Boyd, C. E. 2019. Water quality: an introduction. Springer Nature.
Boyd, C. E., & McNevin, A. A. (2015). Water Use by Aquaculture Systems. In Aquaculture, Resource Use, and the Environment (pp. 101-122). Retrieved 2024/05/27, from https://doi.org/10.1002/9781118857915.ch6
Chen, G., Liu, B., Chen, J., Liu, H., Tan, B., Dong, X., Yang, Q., Chi, S., Zhang, S., & Yao, M. 2022. Supplementing Sulfate-Based Alginate Polysaccharide Improves Pacific White Shrimp (Litopenaeus vannamei) Fed Fishmeal Replacement with Cottonseed Protein Concentrate: Effects on Growth, Intestinal Health, and Disease Resistance. Aquaculture Nutrition. 2022(1): 7132362. https://doi.org/10.1155/2022/7132362
Damsté, J. S. S., Schouten, S., Rijpstra, W. I. C., Hopmans, E. C., Peletier, H., Gieskes, W. W. C., & Geenevasen, J. A. J. 2000. Novel polyunsaturated n-alkenes in the marine diatom Rhizosolenia setigera. European Journal of Biochemistry. 267(18): 5727-5732. https://doi.org/10.1046/j.1432-1327.2000.01636.x
Genkal, S. I. 2012. Morphology, taxonomy, ecology, and distribution of Cyclotella choctawhatcheeana prasad (Bacillariophyta). Inland Water Biology. 5(2): 169-177. https://doi.org/10.1134/S1995082912020046
Jaffer, Y. D., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D. S., & Sharma, P. C. 2020. Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture. 515: 734561. https://doi.org/10.1016/j.aquaculture.2019.734561
Jahan, S. 2023. The Role of Phytoplanktons in the Environment and in Human Life, a Review. BASRA JOURNAL OF SCIENCE. 41: 392-411. 10.29072/basjs.20230212
Jia, J., Chen, Q., Ren, H., Lu, R., He, H., & Gu, P. 2022. Phytoplankton Composition and Their Related Factors in Five Different Lakes in China: Implications for Lake Management. Int J Environ Res Public Health. 19(5). 10.3390/ijerph19053135
Kilham, P., & Hecky, R. E. 1988. Comparative ecology of marine and freshwater phytoplankton1. Limnology and Oceanography. 33(4part2): 776-795. https://doi.org/10.4319/lo.1988.33.4part2.0776
Lad, A., Breidenbach, J. D., Su, R. C., Murray, J., Kuang, R., Mascarenhas, A., Najjar, J., Patel, S., Hegde, P., Youssef, M., Breuler, J., Kleinhenz, A. L., Ault, A. P., Westrick, J. A., Modyanov, N. N., Kennedy, D. J., & Haller, S. T. 2022. As We Drink and Breathe: Adverse Health Effects of Microcystins and Other Harmful Algal Bloom Toxins in the Liver, Gut, Lungs and Beyond. Life (Basel). 12(3). 10.3390/life12030418
Laramore, S., Laramore, C. R., & Scarpa, J. 2001. Effect of Low Salinity on Growth and Survival of Postlarvae and Juvenile Litopenaeus vannamei. Journal of the World Aquaculture Society. 32(4): 385-392. https://doi.org/10.1111/j.1749-7345.2001.tb00464.x
Le Manach, S., Duval, C., Marie, A., Djediat, C., Catherine, A., Edery, M., Bernard, C., & Marie, B. 2019. Global Metabolomic Characterizations of Microcystis spp. Highlights Clonal Diversity in Natural Bloom-Forming Populations and Expands Metabolite Structural Diversity. Front. Microbiol. 10. 10.3389/fmicb.2019.00791
Le, V. V., Ko, S.-R., Kang, M., Oh, H.-M., & Ahn, C.-Y. 2023. Effective control of harmful Microcystis blooms by paucibactin A, a novel macrocyclic tambjamine, isolated from Paucibacter aquatile DH15. Journal of Cleaner Production. 383: 135408. https://doi.org/10.1016/j.jclepro.2022.135408
Lee, K. H., Jeong, H. J., Lee, K., Franks, P., Seong, K., Lee, S. Y., Lee, M. J., Jang, S. H., Potvin, E., Lim, A. S., Yoon, E., Yoo, Y., Kang, N., & Kim, K. Y. 2019. Effects of warming and eutrophication on coastal phytoplankton production. Harmful Algae. 81: 106-118. 10.1016/j.hal.2018.11.017
LeGresley, M., & McDermott, G. 2010. Counting chamber methods for quantitative phytoplankton analysis-haemocytometer, Palmer-Maloney cell and Sedgewick-Rafter cell. Microscopic and Molecular Methods for Quantitative Phytoplankton Analysis: 25-30.
Lemos, D., & Weissman, D. 2021. Moulting in the grow-out of farmed shrimp: a review. Reviews in Aquaculture. 13(1): 5-17. https://doi.org/10.1111/raq.12461
Liao, I. C., & Chien, Y.-H. (2011). The Pacific White Shrimp, Litopenaeus vannamei, in Asia: The World’s Most Widely Cultured Alien Crustacean. In B. S. Galil, P. F. Clark, & J. T. Carlton (Eds.), In the Wrong Place - Alien Marine Crustaceans: Distribution, Biology and Impacts (pp. 489-519). Springer Netherlands. https://doi.org/10.1007/978-94-007-0591-3_17 https://doi.org/10.1007/978-94-007-0591-3_17
Lyu, T., Yang, W., Cai, H., Wang, J., Zheng, Z., & Zhu, J. 2021. Phytoplankton community dynamics as a metrics of shrimp healthy farming under intensive cultivation. Aquaculture Reports. 21: 100965. https://doi.org/10.1016/j.aqrep.2021.100965
Menon, S. V., Kumar, A., Middha, S. K., Paital, B., Mathur, S., Johnson, R., Kademan, A., Usha, T., Hemavathi, K. N., Dayal, S., Ramalingam, N., Subaramaniyam, U., Sahoo, D. K., & Asthana, M. 2023. Water physicochemical factors and oxidative stress physiology in fish, a review. 11. 10.3389/fenvs.2023.1240813
Mugwanya, M., Dawood, M. A. O., Kimera, F., & Sewilam, H. 2022. Anthropogenic temperature fluctuations and their effect on aquaculture: A comprehensive review. Aquaculture and Fisheries. 7(3): 223-243. https://doi.org/10.1016/j.aaf.2021.12.005
Mustika, P., Ren, F., Kasprijo, & Yasmin, M. 2023. Phytoplankton Community in Vannamei Shrimp (Litopenaeus vannamei) Cultivation in Intensive Ponds. IRAQI JOURNAL OF AGRICULTURAL SCIENCES. 54(1): 134-146. 10.36103/ijas.v54i1.1684
Naselli-Flores, L., & Padisák, J. 2023. Ecosystem services provided by marine and freshwater phytoplankton. Hydrobiologia. 850(12-13): 2691-2706. 10.1007/s10750-022-04795-y
Nieri, P., Carpi, S., Esposito, R., Costantini, M., & Zupo, V. 2023. Bioactive Molecules from Marine Diatoms and Their Value for the Nutraceutical Industry. Nutrients. 15(2). 10.3390/nu15020464
Pradhan, B., Kim, H., Abassi, S., & Ki, J. S. 2022. Toxic Effects and Tumor Promotion Activity of Marine Phytoplankton Toxins: A Review. Toxins (Basel). 14(6). 10.3390/toxins14060397
Reynolds, C. S. 1984. The ecology of freshwater phytoplankton.
Ridlo, A., Firdaus, M. L. M., & Sumarwan, J. 2024. Growth of Litopenaeus vannamei using Synbiotics Supplementation Diet in Outdoor Low-Salinity Ponds Concerning Water Quality Parameters and Phytoplankton Communities. Journal of Marine Biotechnology and Immunology. 2(2): 32-36. 10.61741/d2wnd591
Rodríguez-Olague, D., Ponce-Palafox, J. T., Castillo-Vargasmachuca, S. G., Arámbul-Muñoz, E., de los Santos, R. C., & Esparza-Leal, H. M. 2021. Effect of nursery system and stocking density to produce juveniles of whiteleg shrimp Litopenaeus vannamei. Aquaculture Reports. 20: 100709. https://doi.org/10.1016/j.aqrep.2021.100709
Rojo-Arreola, L., García-Carreño, F., Romero, R., & Díaz Dominguez, L. 2020. Proteolytic profile of larval developmental stages of Penaeus vannamei: An activity and mRNA expression approach. PLoS One. 15(9): e0239413. 10.1371/journal.pone.0239413
Rowland, S. J., Allard, W. G., Belt, S. T., Massé, G., Robert, J. M., Blackburn, S., Frampton, D., Revill, A. T., & Volkman, J. K. 2001. Factors influencing the distributions of polyunsaturated terpenoids in the diatom, Rhizosolenia setigera. Phytochemistry. 58(5): 717-728. https://doi.org/10.1016/S0031-9422(01)00318-1
Seidman, E. R., & Lawrence, A. L. 1985. Growth. Feed Digestibility, And Proximate Body Composition Of Juvenile Penaeus vannamei And Penaeus monodon Grown At Different Dissolved Oxygen Levels. J World Aquac Soc. 16(1-4): 333-346. https://doi.org/10.1111/j.1749-7345.1985.tb00214.x
Villareal, T. A. 1988. Positive buoyancy in the oceanic diatom Rhizosolenia debyana H. Peragallo. Deep Sea Research Part A. Oceanographic Research Papers. 35(6): 1037-1045. https://doi.org/10.1016/0198-0149(88)90075-1
Wilhelm, S. W., Bullerjahn, G. S., & McKay, R. M. L. 2020. The Complicated and Confusing Ecology of Microcystis Blooms. mBio. 11(3). 10.1128/mBio.00529-20
Willén, E. 1976. A simplified method of phytoplankton counting. British Phycological Journal. 11(3): 265-278. https://doi.org/10.1080/00071617600650551
Wyban, J., Walsh, W. A., & Godin, D. M. 1995. Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture. 138(1): 267-279. https://doi.org/10.1016/0044-8486(95)00032-1
Yu, Q., Xie, J., Huang, M., Chen, C., Qian, D., Qin, J. G., Chen, L., Jia, Y., & Li, E. 2020. Growth and health responses to a long-term pH stress in Pacific white shrimp Litopenaeus vannamei. Aquaculture Reports. 16: 100280. https://doi.org/10.1016/j.aqrep.2020.100280
Yudiati, E., Isnansetyo, A., Murwantoko, Ayuningtyas, Triyanto, & Handayani, C. R. 2016. Innate immune-stimulating and immune genes up-regulating activities of three types of alginate from Sargassum siliquosum in Pacific white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 54: 46. https://doi.org/10.1016/j.fsi.2016.03.022
Yudiati, E., Isnansetyo, A., Murwantoko, Triyanto, & Handayani, C. R. 2019. Alginate from Sargassum siliquosum simultaneously stimulates innate immunity, upregulates immune genes, and enhances resistance of Pacific white shrimp (Litopenaeus vannamei) against white spot syndrome virus (WSSV). Mar Biotechnol. 21(4): 503. https://doi.org/10.1007/s10126-019-09898-7
Yun, S. M., Lee, S. D., & Lee, J. 2011. Morphology and distribution of some marine diatoms, Family Rhizosoleniaceae, in Korean coastal waters: a genus Rhizosolenia 1. Algae. 26: 141-152. 10.4490/algae.2011.26.2.141
Yung, Y. K., Nicholls, K. H., & Cheng, A. G. 1988. The detection of Rhizosolenia (Bacillariophyceae) in sediment of Ontario lakes and implications for paleoecology. Journal of Paleolimnology. 1(1): 61-69. 10.1007/BF00202194
Yusoff, F. M., Umi, W. A. D., Ramli, N. M., & Harun, R. 2024. Water quality management in aquaculture. Cambridge Prisms: Water. 2: e8. 10.1017/wat.2024.6
Zohary, T., Yacobi, Y. Z., Alster, A., Fishbein, T., Lippman, S., & Tibor, G. (2014). Phytoplankton. In T. Zohary, A. Sukenik, T. Berman, & A. Nishri (Eds.), Lake Kinneret: Ecology and Management (pp. 161-190). Springer Netherlands. https://doi.org/10.1007/978-94-017-8944-8_10 https://doi.org/10.1007/978-94-017-8944-8_10
Downloads
Published
Data Availability Statement
The data that support the findings of this study are available from the corresponding author, upon reasonable request.
Issue
Section
License
Copyright (c) 2024 Journal of Marine Biotechnology and Immunology
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.