Identification of Brown Seaweed on The North and South Coasts of Java Island by Machine Learning

Authors

  • Putri Natasya Diponegoro University Author
  • Chrisna Adhi Suryono Diponegoro University Author

DOI:

https://doi.org/10.61741/a17bdr35

Keywords:

Brown Seaweed, Identification, Machine Learning

Abstract

Seaweed is one of the marine organisms that can be found in almost coastal waters of Indonesia. Brown seaweed is a group of multicellular algae that have adapted to the marine environment. This study uses morphological identification methods for brown seaweed, further facilitated by utilizing machine learning technology. The aim of this research is to compare the identification based on morphological characteristics and by machine learning. The study focused on the North Coast of Teluk Awur and the South Coast of Krakal, Java Island, as the locations for field sample collection, utilizing three stations per water area with the method of collecting images of brown seaweed. The water quality parameters were determined as supporting data of environmental condition. The results of identification with machine learning compared with manual identification gave similar results. These show that on the North Coast, the genus Sargassum was identified with a high accuracy rate of 99.11%, while on the South Coast, the genus Sargassum was identified with an accuracy rate of 99.00%, the genus Padina with an accuracy rate of 99.15%, the genus Turbinaria 98.01%, and the genus Dictyota 96.42%. The growth of brown algae in the North Coast of Teluk Awur and the South Coast of Krakal was influenced by water quality factors such as temperature, salinity, pH, dissolved oxygen, and brightness.

Downloads

Download data is not yet available.

Author Biographies

  • Putri Natasya, Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia

  • Chrisna Adhi Suryono , Diponegoro University

    Department of Marine Science, Faculty of Fisheries and Marine Sciences, Diponegoro University, Semarang, Indonesia

References

Afrianto, E., & Liviawati, E. 1993. Budidaya rumput laut dan cara pengolahannya.

Aslan, L. 1991. Budidaya Rumput Laut.

Atmadja, W., Kadi, A., & Sulistijo, R. 1996. Pengenalan jenis-jenis rumput laut Indonesia. Puslitbang Oseanologi LIPI. Jakarta. 191.

Aulia, A., Kurnia, S. K., & Mulyana, D. 2021. Identifikasi Morfologi Beberapa Jenis Anggota Phaeophyta di Pantai Palem Cibeureum, Anyer, Banten. Tropical Bioscience: Journal of Biological Science. 1(1): 21-28. https://doi.org/10.32678/tropicalbiosci.v1i1.4355

Codero, P. 1980. Taxonomy and Distribution of Philiphine useful seaweed. National Research Council of the Philiphines. Metro Manila Philiphines.

Cotas, J., Gomes, L., Pacheco, D., & Pereira, L. (2023). Ecosystem Services Provided by Seaweeds. Hydrobiology, 2(1), 75-96. https://doi.org/Ecosystem Services Provided by Seaweeds. 10.3390/hydrobiology2010006

Eggertsen, M., & Halling, C. 2021. Knowledge gaps and management recommendations for future paths of sustainable seaweed farming in the Western Indian Ocean. Ambio. 50(1): 60-73. https://doi.org/10.1007/s13280-020-01319-7

Hardan, H., Warsidah, W., & Nurdiansyah, I. S. 2020. Laju pertumbuhan rumput laut Kappaphycus alvarezii dengan metode penanaman yang berbeda di perairan laut desa Sepempang Kabupaten Natuna. Jurnal Laut Khatulistiwa. 3(1): 14-22. https://dx.doi.org/10.26418/lkuntan.v3i1.35101

Hartog, D. 1972. Substratum Plant-Multicelluler Plant. Environmental Factor. London: Willey Interscience: 1277-1366.

Lobban, C. S., & Wynne, M. J. 1981. The biology of seaweeds. 17.

Malahina, E. A. U., Hadjon, R. P., & Bisilisin, F. Y. 2022. Teachable Machine: Real-Time Attendance of Students Based on Open Source System. The IJICS. 6(3): 140-146. http://dx.doi.org/10.30865/ijics.v6i3.4928

Rigitta, T. M. A., Maslukah, L., & Yusuf, M. 2015. Sebaran fosfat dan nitrat di Perairan Morodemak, Kabupaten Demak. Journal of Oceanography. 4(2): 8

Romimohtarto, K., & Juwana, S. 2004. Biologi laut: Ilmu Pengetahuan Tentang Biota Laut. Penerbit Djambatan, Jakarta: 540.

Rosari, A., & Yasniwati, Y. 2023. Pengaturan kegiatan usaha perikanan tangkap di laut territorial dan zona ekonomi eklusif indonesia (zeei) dan kapal tangkap ikan nelayan di Provinsi Sumatera Barat. UNES Law Review. 5(4): 2033-2054. https://doi.org/10.31933/unesrev.v5i4.580

Salintohe, D. I., Hasniati, & Musdar, I. A. 2022. Implementasi Machine Learning Untuk Mengidentifikasi Tanaman Hias Pada Aplikasi Tierra. JTRISTE. 9(1): 1-15.

Samad, G. P., Sanger, G., Kaseger, B. E., Salindeho, N., Montolalu, R. I., & Makapedua, D. M. 2021. Kandungan Pigmen dan Aktivitas Antioksidan Rumput Laut Ulva dan Caulerpa. Media Teknologi Hasil Perikanan. 9(3): 131-134. https://doi.org/10.35800/mthp.9.3.2021.31713

Sridamayani, N. W., & Nane, L. 2022. Identifikasi Jenis Makroalga Cokelat (Phaeophyta) Di Perairan Pantai Blue Merlin, Teluk Tomini, Gorontalo. Biospecies. 15(1): 37-42. https://doi.org/10.22437/biospecies.v15i1.11482

Sugiyono. 2016. Metode Penelitian Kunatitatif Kualitatif dan R&D. Alfabeta, Bandung: 451.

Sumerah, S. S., Andaki, J. A., & Dien, C. R. 2020. Analisis sensitivitas usaha budidaya rumput laut di Desa Nain Kecamatan Wori Kabupaten Minahasa Utara AKULTURASI. 8(1): 1-6. https://doi.org/10.35800/akulturasi.8.1.2020.28329

Sunarernanda, Y. P., Ruswahyuni, -., & Suryanti, -. 2014. Hubungan kerapatan rumput laut dengan kelimpahan epifauna pada substrat berbeda di Pantai Teluk Awur Jepara. Management of Aquatic Resources Journal (MAQUARES): 9. https://doi.org/10.14710/marj.v3i3.5524

Tarigan, T. A., Simarmata, N., Nurisman, N., & Rahman, Y. 2020. Analisis sedimen dan pengaruhnya terhadap kondisi garis pantai di kawasan pantai timur Kabupaten Lampung Selatan. Journal of Science and Applicative Technology(1): 26-31%V 24. https://doi.org/10.35472/jsat.v4i1.249

Trono Jr, G. C. 1997. Field guide and atlas of the seaweed resources of the Philippines. Bookmark. Inc. Makaty City. 306.

Wafi, A., Ariadi, H., Khumaidi, A., & Muqsith, A. 2021. Pemetaan Kesesuaian Lahan Budidaya Rumput Laut Di Kecamatan Banyuputih, Situbondo Berdasarkan Indikator Kimia Air. Samakia : Jurnal Ilmu Perikanan. 12(2): 160-169. https://doi.org/10.35316/jsapi.v12i2.1346

Winarya, S., & Dewi, R. 2014. Potensi rumput laut yang mengandung potensi farmakologi di sepanjang pantai utara Pulau Jawa. Jurnal Harpodon Borneo. 7(1). https://doi.org/10.35334/harpodon.v7i1.8

Downloads

Published

2024-05-29

Data Availability Statement

The data that support the findings of this study are available from the corresponding author, upon reasonable request

Issue

Section

Marine Biotechnology and Immunology

How to Cite

Natasya, P. ., & Suryono , C. A. . (2024). Identification of Brown Seaweed on The North and South Coasts of Java Island by Machine Learning. Journal of Marine Biotechnology and Immunology, 2(2), 1-6. https://doi.org/10.61741/a17bdr35