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 This study aimed to evaluate the influence of probiotic supplementation using L. 

bulgaricus FNCC-004 and prebiotics sodium alginate on the growth of 

Litopenaeus vannamei shrimp, as well as water quality parameters and plankton 

density in a five tons circle outdoor pond for 30 days of rearing. Assessment was 

conducted on specific pathogen-resistant (SPR) shrimp. Shrimp weight, plankton 

density, and water quality, with samples collected from circular ponds. The 

probiotic L. bulgaricus FNCC–004 was prepared as feed supplementation by 

adding 2% sodium alginate into the incubated bacterial media. One kg of feed 

was mixed with 200 mL of media containing the alginate-probiotic mixture. 

Feeding frequency was four times a day. Water quality sampling involved 

temperature, salinity, pH, dissolved oxygen (DO), and light intensity, measured 

twice daily. Plankton density was determined using a haemocytometer under 

microscope. Specific growth rate (SGR) of shrimp was calculated based on initial 

and final weights. Results showed variations in water quality parameters 

throughout the day, indicating the dynamic nature of the aquatic environment. 

Plankton density analysis revealed variations in species and abundance over the 

study period. The specific growth rate of Litopenaeus vannamei shrimp was 

recorded at 17.44% per day. This study enhances understanding of the effects of 

synbiotics supplementation in the diet on shrimp growth and environmental 

conditions in aquaculture systems. 

 

                                                                       Copyright ©2024 Journal of Marine Biotechnology and Immunology. 

1. Introduction 

The cultivation of Litopenaeus vannamei shrimp is 

one of the most profitable sectors in the global aquaculture 

industry. L. vannamei is highly valued for its wide market 

share both domestically and globally due to its high economic 

value and advantages such as disease resistance and high 

productivity rates. However, high-productivity Vannamei 

shrimp farming generates significant farming waste, 

primarily nitrogen waste produced through the degradation 

and decomposition of organic compounds (Emerenciano et 

al., 2021). 

Water quality deterioration in shrimp ponds is 

caused by the accumulation of high inorganic compound 

content at the bottom, unstable dissolved oxygen levels, and 

high toxin-producing bacteria, which create a toxic 

environment for L. vannamei. Sediments at the pond bottom 

originate from shrimp feces, uneaten feed, and molting 

(ecdysis). Such conditions lead to higher concentrations of 

harmful bacteria like Vibrio, which thrive in high organic 

matter and poor water quality (Alfiansah et al., 2018). High 

organic waste from feed residue and feces in shrimp farming 

leads to accumulation and sedimentation at the pond bottom, 

necessitating a decomposition process. Effective water 

quality management is essential to maintain the culture media 

in good condition, as poor water quality can reduce L. 

vannamei shrimp production performance. Fluctuations in 

water quality, particularly temperature, can decrease L. 

vannamei's appetite, increasing ammonia content in the 

rearing media, which is toxic to the shrimp (Bull et al., 2020; 

Rasyidah et al., 2024). 

Increasing L. vannamei production often faces 

problems with the emergence of diseases from bacteria, 

viruses, fungi, and even parasites, leading to economic losses 

(Walker and Winton, 2010; Yadav et al., 2020). Moreover, 

water quality is a critical factor in the success of L. vannamei 

shrimp farming activities. Water quality deterioration will 

make L. vannamei susceptible to disease attacks, even mass 

mortality (Brito et al., 2014). Therefore, alternatives are 
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needed to increase L. vannamei shrimp production by 

improving their health in an environmentally friendly 

manner, such as through the administration of 

immunostimulants (Azhar and Yudiati, 2023). 

Several studies have proven that alginate 

immunostimulants in L. vannamei produce positive results. A 

few research revealed that using alginate in L. vannamei can 

stimulate and enhance non-specific immune responses, 

preventing WSSV infection (Yudiati et al., 2019) and Vibrio 

parahaemolyticus AHPND (Azhar and Yudiati, 2023). 

Setyawan et al. (2021) also reported that adding alginate 

extract at a dose of 2 g/kg feed can increase Total Haemocyte 

Count (THC), Phagocytosis Activity (AF), and Total Plasma 

Protein (TPP). This study aimed to evaluate the influence of 

probiotic-prebiotic (synbiotics) supplementation using L. 

bulgaricus FNCC-004 and sodium alginate on the growth of 

L. vannamei shrimp, as well as water quality parameters and 

plankton density in aquaculture systems. 

 

2. Material and methods 

2.1 Materials 

 The materials was shrimp with 0.01 ± 0.00 g in 

weight. Shrimps were reared in 5 tons circular tank at the 

density of 86 ind.m2 for 30 days. The salinity of media was 

maintained at low (4-6 ppt). 

2.2 Methods 

2.2.1 Preparation of probiotic L. bulgaricus FNCC–004 and 

prebiotic sodium alginate as feed supplementation  

FNCC–004 was provided by the Laboratory of 

Tropical Marine Biotechnology, Faculty of Fisheries and 

Marine Science, Diponegoro University. Previously, all 

glassware, media, and sterilization materials were autoclaved 

and sprayed with 70% alcohol in a Laminar Air Flow under 

UV exposure (Guridi et al., 2019). One colony of FNCC–004 

cultured in De Man, Rogosa, and Shape Agar/MRS Agar 

media was resuspended in 100 mL of Nutrient Broth/NB 

(Merck, USA) and 5% MRS broth, then incubated for 24 

hours at 37°C (Yudiati et al., 2023; Yudiati et al., 2021). A 

prebiotic-probiotic (synbiotic) mixture was formulated by 

mixing FNCC–004 and sodium alginate. Alginate was 

prepared by adding 2% into the incubated bacterial media. 

Feed weighing 1 kg was mixed with 200 mL of media 

containing the Alginate-probiotic mixture. 

2.2.2 Experimental design 

The shrimp used were specific pathogen resistant 

(SPR) from the CV Hadid Mukti Karya hatchery, stocked at 

a density of 86 shrimp/m² in circular ponds with a diameter 

of 3 meters and a water depth of 1 meter (1.2 meters total 

depth). Before stocking, acclimatization was done by placing 

the shrimp bags in the ponds to match the pond water 

temperature. Feeding frequency was four times a day at 

05:00, 10:00, 15:00, and 22:00. 

2.2.3 Water quality sampling procedure 

Water quality sampling involved measuring 

temperature, salinity, pH, dissolved oxygen (DO), and light 

intensity. Data was collected two times a day at 8:00 AM and 

4:00 PM. 

 

 

2.2.4 Plankton density 

Plankton algae are counted using a haemocytometer 

under a microscope at varying magnifications depending on 

their size. Larger forms are counted under low magnification, 

while smaller or more challenging forms are observed under 

higher magnification, using an immersion oil for accuracy. 

When larger plankton organisms are sparse, it is advisable to 

count them across the entire chamber bottom for reliability. 

However, in cases of high plankton density, counting only a 

portion of the chamber bottom, such as several diagonal 

fields, suffices to account for any irregularities while still 

providing representative data. This adaptable approach 

ensures accurate and reliable estimation of plankton density, 

tailored to the sample's characteristics (LeGresley and 

McDermott, 2010; Willén, 1976). Identification guides used 

for various common phytoplankton species included works 

by Genkal (2012); Kilham and Hecky (1988); Reynolds 

(1984). 

2.2.5 Specific Growth Rate 

The shrimp were randomly chosen from the 

population. Their weight was recorded on days 0 and 30 of 

the maintenance period using a scale. After completing the 

measurements, the weight data were used to determine the 

specific growth rate (SGR) as follows: 

 

𝑆𝐺𝑅% =
(𝐿𝑛𝑊𝑡 − 𝐿𝑛𝑊𝑜)

𝑡
𝑥100% 

 

SGR = Specific Growth Rate 

Wt  = Final weight 

Wo = Initial weight  

 

3. Results 

3.1 Water quality parameters 

The water quality parameters measured at 8:00 AM 

and 4:00 PM showed variations (Table 1). At 8:00 AM, 

dissolved oxygen levels ranged from 5.58 to 6.9 mg L-1, 

temperature from 26.8 to 29.3°C, light intensity from 22,300 

to 61,000 Lux, pH from 7.8 to 8.02, and salinity from 4 to 6 

ppt. At 4:00 PM, dissolved oxygen levels ranged from 6.13 to 

7.16 mg L-1, temperature from 29.2 to 32.3°C, light intensity 

from 4,370 to 20,400 Lux, pH from 7.9 to 8.66, and salinity 

from 4 to 6 ppt. These findings illustrate the fluctuations in 

water quality parameters throughout the day, providing 

insights into the dynamic nature of the aquatic environment. 

3.2 Plankton identification and density 

Base on Table 2, the plankton density measurements 

over 10, 20, and 30 days showed that Scenedesmus appeared 

only on day 30 (11.11 x 103 cell mL-1), Anabaena only on day 

20 (11.11 x x 103 cell mL-1), Microcystis peaked on day 20 

(33.33 x 103 cell mL-1) but was absent on day 30, Cyclotella 

had the highest density on day 10 (425.66 x 103 cell mL-1) and 

then decreased, Rhizosolenia remained constant (11.11 x 103 

cell mL-1), and Peridinium appeared only on day 20 (11.11 x 

103 cell mL-1). 

3.3 Specific Growth Rate (SGR) 

According to Table 3, the initial and final weights 

were 0.01 ± 0.00 and 1.87 ± 0.34, respectively. The specific 

growth rate was recorded at 17.44% per day. 

Table 1. Water Quality Parameters 

Sampling hours Parameters 

Dissolved Oxygen 

(mg L-1) 

Temperature 

(oC) 

Light Intensity 

(Lux) 

pH Salinity 

(ppt) 

8:00 AM 5.58 – 6.9 26.8 – 29.3 22300 - 61000 7.8 – 8.02 4 - 6 

4:00 PM 6.13 – 7.16 29.2 - 32.3 4370 - 20400 7.9 – 8.66 4 - 6 
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Tabel 2. Plankton Identification and Density every 10 days of rearing 

Plankton Genus Plankton Density (x 103 cell mL-1) 

10 days 20 days 30 days 

Green Algae Scenedesmus ND ND 11.11 

Blue Green Algae Anabaena ND 11.11 ND 

 Microcystis 16.5 33.33 ND 

Chrysophyta Cyclotella 425.66 81.48 140.74 

 Rhizosolenia 11.11 11.11 11.11 

Dinoflagelata Peridinium ND 11.11 ND 

ND : Not detected 

 

Table 3. Weight of Litopaneus vannamei 

Initial weight (gr) Final weight (gr) Specific Growth Rate (%) 

0.01 ± 0.00 1.87 ± 0.34 17.44 % 

4. Discussion 

The variations in water quality parameters and 

plankton density observed in this study are critical for 

understanding the dynamic nature of aquatic ecosystems. 

Water quality is a critical factor in maintaining the health of 

aquatic environments (Rasyidah et al., 2024). It influences 

the survival, growth, and reproduction of aquatic organisms. 

Table 1 presents the water quality parameters measured at 

8:00 AM and 4:00 PM, showing significant variations 

throughout the day. These fluctuations align with the findings 

of Boyd and McNevin (2015a, 2015b); Boyd and Tucker 

(1998), who noted that diurnal variations in dissolved oxygen 

and temperature are common in aquaculture ponds due to 

photosynthesis and respiration cycles. The increase in 

dissolved oxygen in the afternoon could be attributed to 

photosynthetic activity, which peaks during daylight hours 

(Nzayisenga et al., 2020). However, the higher afternoon 

temperatures may increase metabolic rates, leading to greater 

oxygen consumption (Ebeling et al., 2006). The stability of 

salinity is crucial for shrimp growth, as L. vannamei is known 

to tolerate a wide range of salinity levels but thrives best in 

consistent conditions (Boyd and Pillai, 1985). The slight 

fluctuations in pH observed in this study are within 

acceptable limits for shrimp culture, as extreme pH levels can 

be detrimental to shrimp health (Yu et al., 2020). 

Plankton density is a key indicator of the primary 

productivity and overall health of an aquatic ecosystem. 

These findings are consistent with studies by Glibert (2017) 

and Visser et al. (2016), who observed that plankton 

populations are influenced by nutrient availability, light 

conditions, and predation. The peak in Microcystis density on 

day 20, followed by its absence on day 30, could be due to 

nutrient depletion or increased grazing pressure (Paerl and 

Otten, 2013). The constant presence of Rhizosolenia suggests 

a stable niche, likely supported by consistent environmental 

conditions. The high initial density of Cyclotella and its 

subsequent decrease may reflect an initial burst of nutrient 

availability, followed by competitive exclusion or resource 

limitation (Smayda, 1997). This pattern underscores the 

importance of monitoring and managing nutrient inputs to 

maintain balanced plankton communities, which are crucial 

for supporting higher trophic levels, including shrimp 

(Kudela and Gobler, 2012). The presence of Microcystis, a 

known harmful algae, on day 20 highlights the potential risks 

associated with nutrient imbalances. Harmful algal blooms 

(HABs) can have devastating effects on aquaculture 

operations, leading to mass mortalities and significant 

economic losses (Glibert, 2017). 

This high SGR indicates optimal growth conditions, 

likely facilitated by the controlled water quality parameters 

and sufficient nutrient availability. The growth rate observed 

in this study is comparable to those reported by Gao et al. 

(2016) and Khanjani et al. (2020), who found that L. 

vannamei exhibited high growth rates under optimal 

conditions. The stability of key water quality parameters, 

such as salinity and pH, likely contributed to this favorable 

outcome (Ariadi et al., 2019). Probiotics, as living 

microorganisms administered orally, lead to health benefits 

by altering the microflora in specific host compartments, 

stimulating innate, cellular, and humoral immune responses. 

Prebiotics, indigestible fibers, enhance gut bacteria, 

producing by-products that improve host health. Both 

modulate immunity, boosting aquatic animals' health (Akhter 

et al., 2015). This remarkable growth rate, represented by a 

specific growth rate of 17.44% per day, underscores the 

positive impact of probiotic-prebiotic supplementation using 

L. bulgaricus FNCC-004 and sodium alginate on the growth 

of L. vannamei shrimp. These results are consistent with 

previous studies that have demonstrated the efficacy of 

probiotics in promoting growth and improving overall health 

in aquaculture species (Chiu et al., 2021; Lin and Chen, 2022) 

The findings of this study have several implications 

for aquaculture practices. Maintaining stable water quality 

parameters is essential for promoting the health and growth 

of cultured species. Regular monitoring of dissolved oxygen, 

temperature, pH, and salinity can help identify and mitigate 

potential stressors in the aquatic environment (Boyd and 

Pillai, 1985; Boyd and McNevin, 2015b; Boyd and Tucker, 

1998). The dynamic nature of plankton populations highlights 

the need for careful nutrient management. Excessive nutrient 

inputs can lead to harmful algal blooms, while insufficient 

nutrients can limit primary productivity (Kudela and Gobler, 

2012). Balancing nutrient levels is crucial for maintaining 

healthy and productive aquaculture systems. The high 

specific growth rate of shrimp under the conditions studied 

suggests that controlled environments with consistent water 

quality and adequate feeding regimes can enhance shrimp 

production. This information is valuable for optimizing 

aquaculture practices, particularly in regions where 

environmental conditions can vary widely. 
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5. Conclusions 

Plankton density measurements further emphasize 

the significance of nutrient management and environmental 

stability. The high specific growth rate of shrimp under these 

conditions provides a practical reference for aquaculture 

practices, reinforcing the value of maintaining controlled and 

favorable environmental conditions to promote growth and 

productivity.  
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